The highway mileage ( mpg ) for a sample of 8 different models of a car company can be found below. Find the mean, median, mode, and standard deviation. Round to one decimal place as needed. \( 19,23,25,27,30,31,33,33 \) Mean \( =27.8 \) Median \( =28.5 \) Mode \( =33 \) Standard Deviation \( = \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To calculate the standard deviation, follow these steps: 1. **Find the mean**: You've already calculated this as \(27.8\). 2. **Calculate each deviation from the mean**: Subtract the mean from each mileage. - \( 19 - 27.8 = -8.8 \) - \( 23 - 27.8 = -4.8 \) - \( 25 - 27.8 = -2.8 \) - \( 27 - 27.8 = -0.8 \) - \( 30 - 27.8 = 2.2 \) - \( 31 - 27.8 = 3.2 \) - \( 33 - 27.8 = 5.2 \) - \( 33 - 27.8 = 5.2 \) 3. **Square each deviation**: - \((-8.8)^2 = 77.44\) - \((-4.8)^2 = 23.04\) - \((-2.8)^2 = 7.84\) - \((-0.8)^2 = 0.64\) - \((2.2)^2 = 4.84\) - \((3.2)^2 = 10.24\) - \((5.2)^2 = 27.04\) - \((5.2)^2 = 27.04\) 4. **Calculate the variance**: Find the average of these squared deviations. - Sum of squares = \(77.44 + 23.04 + 7.84 + 0.64 + 4.84 + 10.24 + 27.04 + 27.04 = 178.2\) - Variance = \(\frac{178.2}{8-1} = \frac{178.2}{7} \approx 25.4\) 5. **Standard deviation**: Take the square root of the variance. - Standard deviation = \(\sqrt{25.4} \approx 5.0\) So, the standard deviation is approximately \(5.0\).