57) If \( \mathrm{f}(x)=\cos 3 x+\sin x \), then \( \mathrm{f}\left(\frac{\pi}{2}\right) \) equals \( \begin{array}{llll}\text { A) } 1 & \text { B) } 2 & \text { C) }-1 & \text { D) } 0\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( f\left(\frac{\pi}{2}\right) \) for the function \( f(x) = \cos(3x) + \sin(x) \), we first substitute \( x = \frac{\pi}{2} \) into the function. Calculating the cosine and sine values: \[ f\left(\frac{\pi}{2}\right) = \cos\left(3 \cdot \frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) \] Now, simplifying each part: 1. \( \cos\left(3 \cdot \frac{\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right) = 0 \) 2. \( \sin\left(\frac{\pi}{2}\right) = 1 \) Adding these values together: \[ f\left(\frac{\pi}{2}\right) = 0 + 1 = 1 \] Thus, the result is \( \boxed{1} \).