Pregunta
upstudy study bank question image url

Given that \( f(x)=x^{2}-9 x \) and \( g(x)=x+12 \), find (a) \( f+g=\square \) and its domain is \( \square \) and its domain is \( \square \) and its domain is \( \square \) (b) \( f-g=\square \) and its domain is \( x \neq \square \) (c) \( f g=\square \) (d) \( \frac{f}{g}=\square \)

Ask by Mckenzie Salazar. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) \( f + g = x^{2} - 8x + 12 \), domain: all real numbers (b) \( f - g = x^{2} - 10x - 12 \), domain: all real numbers (c) \( f \cdot g = x^{3} + 3x^{2} - 108x \), domain: all real numbers (d) \( \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \), domain: \( x \neq -12 \)

Solución

Let's solve each part step by step. ### Given Functions: - \( f(x) = x^{2} - 9x \) - \( g(x) = x + 12 \) --- ### (a) \( f + g \) **Calculation:** \[ f(x) + g(x) = (x^{2} - 9x) + (x + 12) = x^{2} - 8x + 12 \] **Expression:** \[ f + g = x^{2} - 8x + 12 \] **Domain:** Both \( f(x) \) and \( g(x) \) are polynomials, which are defined for all real numbers. \[ \text{Domain of } f + g: \mathbb{R} \] --- ### (b) \( f - g \) **Calculation:** \[ f(x) - g(x) = (x^{2} - 9x) - (x + 12) = x^{2} - 10x - 12 \] **Expression:** \[ f - g = x^{2} - 10x - 12 \] **Domain:** Both \( f(x) \) and \( g(x) \) are polynomials, which are defined for all real numbers. \[ \text{Domain of } f - g: \mathbb{R} \] --- ### (c) \( f \cdot g \) **Calculation:** \[ f(x) \cdot g(x) = (x^{2} - 9x)(x + 12) \] \[ = x^{3} + 12x^{2} - 9x^{2} - 108x \] \[ = x^{3} + 3x^{2} - 108x \] **Expression:** \[ f \cdot g = x^{3} + 3x^{2} - 108x \] **Domain:** Both \( f(x) \) and \( g(x) \) are polynomials, which are defined for all real numbers. \[ \text{Domain of } f \cdot g: \mathbb{R} \] --- ### (d) \( \frac{f}{g} \) **Calculation:** \[ \frac{f(x)}{g(x)} = \frac{x^{2} - 9x}{x + 12} \] **Expression:** \[ \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \] **Domain:** The denominator \( g(x) = x + 12 \) must not be zero. \[ x + 12 \neq 0 \implies x \neq -12 \] \[ \text{Domain of } \frac{f}{g}: x \in \mathbb{R}, x \neq -12 \] --- ### Summary of Answers: **(a)** \[ f + g = x^{2} - 8x + 12 \] \[ \text{Domain}: \mathbb{R} \] **(b)** \[ f - g = x^{2} - 10x - 12 \] \[ \text{Domain}: \mathbb{R} \] **(c)** \[ f \cdot g = x^{3} + 3x^{2} - 108x \] \[ \text{Domain}: \mathbb{R} \] **(d)** \[ \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \] \[ \text{Domain}: x \neq -12 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s solve each of these operations step by step! (a) To find \( f + g \): \[ f(x) + g(x) = (x^{2} - 9x) + (x + 12) = x^{2} - 9x + x + 12 = x^{2} - 8x + 12 \] The domain is all real numbers, so we have: \[ f + g = x^{2} - 8x + 12 \quad \text{and its domain is } (-\infty, \infty) \] (b) To find \( f - g \): \[ f(x) - g(x) = (x^{2} - 9x) - (x + 12) = x^{2} - 9x - x - 12 = x^{2} - 10x - 12 \] The domain remains all real numbers, so we write: \[ f - g = x^{2} - 10x - 12 \quad \text{and its domain is } (-\infty, \infty) \] (c) To find \( f g \): \[ f(x) g(x) = (x^{2} - 9x)(x + 12) = x^{3} + 12x^{2} - 9x^{2} - 108x = x^{3} + 3x^{2} - 108x \] So we have: \[ f g = x^{3} + 3x^{2} - 108x \] (d) To find \( \frac{f}{g} \): \[ \frac{f(x)}{g(x)} = \frac{x^{2} - 9x}{x + 12} \] For the domain, we need \( g(x) \neq 0 \): \[ x + 12 \neq 0 \rightarrow x \neq -12 \] Thus, we get: \[ \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \quad \text{and its domain is } x \neq -12 \] So to summarize all the results: (a) \( f + g = x^{2} - 8x + 12 \) and its domain is \( (-\infty, \infty) \) (b) \( f - g = x^{2} - 10x - 12 \) and its domain is \( (-\infty, \infty) \) (c) \( f g = x^{3} + 3x^{2} - 108x \) (d) \( \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \) and its domain is \( x \neq -12 \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad