Given that \( f(x)=x^{2}-9 x \) and \( g(x)=x+12 \), find (a) \( f+g=\square \) and its domain is \( \square \) and its domain is \( \square \) and its domain is \( \square \) (b) \( f-g=\square \) and its domain is \( x \neq \square \) (c) \( f g=\square \) (d) \( \frac{f}{g}=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let’s solve each of these operations step by step! (a) To find \( f + g \): \[ f(x) + g(x) = (x^{2} - 9x) + (x + 12) = x^{2} - 9x + x + 12 = x^{2} - 8x + 12 \] The domain is all real numbers, so we have: \[ f + g = x^{2} - 8x + 12 \quad \text{and its domain is } (-\infty, \infty) \] (b) To find \( f - g \): \[ f(x) - g(x) = (x^{2} - 9x) - (x + 12) = x^{2} - 9x - x - 12 = x^{2} - 10x - 12 \] The domain remains all real numbers, so we write: \[ f - g = x^{2} - 10x - 12 \quad \text{and its domain is } (-\infty, \infty) \] (c) To find \( f g \): \[ f(x) g(x) = (x^{2} - 9x)(x + 12) = x^{3} + 12x^{2} - 9x^{2} - 108x = x^{3} + 3x^{2} - 108x \] So we have: \[ f g = x^{3} + 3x^{2} - 108x \] (d) To find \( \frac{f}{g} \): \[ \frac{f(x)}{g(x)} = \frac{x^{2} - 9x}{x + 12} \] For the domain, we need \( g(x) \neq 0 \): \[ x + 12 \neq 0 \rightarrow x \neq -12 \] Thus, we get: \[ \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \quad \text{and its domain is } x \neq -12 \] So to summarize all the results: (a) \( f + g = x^{2} - 8x + 12 \) and its domain is \( (-\infty, \infty) \) (b) \( f - g = x^{2} - 10x - 12 \) and its domain is \( (-\infty, \infty) \) (c) \( f g = x^{3} + 3x^{2} - 108x \) (d) \( \frac{f}{g} = \frac{x^{2} - 9x}{x + 12} \) and its domain is \( x \neq -12 \)