Responder
1. \( 3x^{2} + 9x - 9a^{4} + 18a^{3} - 3a^{2} \)
2. \( x^{2} - 7x + 10 \)
3. \( x^{2} + 3x - 10 \)
4. \( 6x^{2} + 7x - 3 \)
5. \( 21xm^{3} + 28xm^{2}n - 6xm^{2} - 8xmn \)
6. \( 6x^{8} - 5x^{4}y^{2} - 6y^{4} \)
7. \( 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \)
Solución
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x+5\right)\left(x-2\right)\)
- step1: Apply the distributive property:
\(x\times x-x\times 2+5x-5\times 2\)
- step2: Multiply the terms:
\(x^{2}-2x+5x-10\)
- step3: Add the terms:
\(x^{2}+3x-10\)
Expand the expression \( (x - 5)(x - 2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x-5\right)\left(x-2\right)\)
- step1: Apply the distributive property:
\(x\times x-x\times 2-5x-\left(-5\times 2\right)\)
- step2: Multiply the terms:
\(x^{2}-2x-5x-\left(-10\right)\)
- step3: Remove the parentheses:
\(x^{2}-2x-5x+10\)
- step4: Subtract the terms:
\(x^{2}-7x+10\)
Expand the expression \( (3 x - 1)(2 x + 3) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(3x-1\right)\left(2x+3\right)\)
- step1: Apply the distributive property:
\(3x\times 2x+3x\times 3-2x-3\)
- step2: Multiply the terms:
\(6x^{2}+9x-2x-3\)
- step3: Subtract the terms:
\(6x^{2}+7x-3\)
Expand the expression \( (2 x^{4} - 3 y^{2})(3 x^{4} + 2 y^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x^{4}-3y^{2}\right)\left(3x^{4}+2y^{2}\right)\)
- step1: Apply the distributive property:
\(2x^{4}\times 3x^{4}+2x^{4}\times 2y^{2}-3y^{2}\times 3x^{4}-3y^{2}\times 2y^{2}\)
- step2: Multiply the terms:
\(6x^{8}+4x^{4}y^{2}-9y^{2}x^{4}-6y^{4}\)
- step3: Subtract the terms:
\(6x^{8}-5x^{4}y^{2}-6y^{4}\)
Expand the expression \( (4 x^{4} + 3 y^{5})(2 x^{4} - 4 y^{3}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(4x^{4}+3y^{5}\right)\left(2x^{4}-4y^{3}\right)\)
- step1: Apply the distributive property:
\(4x^{4}\times 2x^{4}-4x^{4}\times 4y^{3}+3y^{5}\times 2x^{4}-3y^{5}\times 4y^{3}\)
- step2: Multiply the terms:
\(8x^{8}-16x^{4}y^{3}+6y^{5}x^{4}-12y^{8}\)
Expand the expression \( 3 x (x + 3) - 3 a (3 a^{3} - 6 a^{2} + a) \)
Simplify the expression by following steps:
- step0: Subtract the terms:
\(3x\left(x+3\right)-3a\left(3a^{3}-6a^{2}+a\right)\)
- step1: Expand the expression:
\(3x^{2}+9x-3a\left(3a^{3}-6a^{2}+a\right)\)
- step2: Expand the expression:
\(3x^{2}+9x-9a^{4}+18a^{3}-3a^{2}\)
Expand the expression \( (7 m - 2)(x m)(3 m + 4 n) \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(7m-2\right)\left(xm\right)\left(3m+4n\right)\)
- step1: Multiply the terms:
\(\left(7m-2\right)xm\left(3m+4n\right)\)
- step2: Multiply the first two terms:
\(xm\left(7m-2\right)\left(3m+4n\right)\)
- step3: Multiply the terms:
\(\left(7xm^{2}-2xm\right)\left(3m+4n\right)\)
- step4: Apply the distributive property:
\(7xm^{2}\times 3m+7xm^{2}\times 4n-2xm\times 3m-2xm\times 4n\)
- step5: Multiply the terms:
\(21xm^{3}+28xm^{2}n-6xm^{2}-8xmn\)
Let's expand and simplify each expression step by step:
1. **Expression:** \( 3x(x+3) - 3a(3a^{3}-6a^{2}+a) \)
- **Step 1:** Expand \( 3x(x+3) \):
\[
3x^2 + 9x
\]
- **Step 2:** Expand \( -3a(3a^{3}-6a^{2}+a) \):
\[
-3a(3a^{3}) + 3a(6a^{2}) - 3a(a) = -9a^{4} + 18a^{3} - 3a^{2}
\]
- **Step 3:** Combine the results:
\[
3x^{2} + 9x - 9a^{4} + 18a^{3} - 3a^{2}
\]
**Final Result:** \( 3x^{2} + 9x - 9a^{4} + 18a^{3} - 3a^{2} \)
2. **Expression:** \( (x-5)(x-2) \)
- **Step 1:** Expand:
\[
x^2 - 2x - 5x + 10 = x^2 - 7x + 10
\]
**Final Result:** \( x^{2} - 7x + 10 \)
3. **Expression:** \( (x+5)(x-2) \)
- **Step 1:** Expand:
\[
x^2 - 2x + 5x - 10 = x^2 + 3x - 10
\]
**Final Result:** \( x^{2} + 3x - 10 \)
4. **Expression:** \( (3x-1)(2x+3) \)
- **Step 1:** Expand:
\[
6x^2 + 9x - 2x - 3 = 6x^2 + 7x - 3
\]
**Final Result:** \( 6x^{2} + 7x - 3 \)
5. **Expression:** \( (7m-2)(xm)(3m+4n) \)
- **Step 1:** Expand:
\[
21xm^{3} + 28xm^{2}n - 6xm^{2} - 8xmn
\]
**Final Result:** \( 21xm^{3} + 28xm^{2}n - 6xm^{2} - 8xmn \)
6. **Expression:** \( (2x^{4}-3y^{2})(3x^{4}+2y^{2}) \)
- **Step 1:** Expand:
\[
6x^{8} + 4x^{4}y^{2} - 9y^{4}
\]
**Final Result:** \( 6x^{8} - 5x^{4}y^{2} - 6y^{4} \)
7. **Expression:** \( (4x^{4}+3y^{5})(2x^{4}-4y^{3}) \)
- **Step 1:** Expand:
\[
8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8}
\]
**Final Result:** \( 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \)
### Summary of Results:
1. \( 3x^{2} + 9x - 9a^{4} + 18a^{3} - 3a^{2} \)
2. \( x^{2} - 7x + 10 \)
3. \( x^{2} + 3x - 10 \)
4. \( 6x^{2} + 7x - 3 \)
5. \( 21xm^{3} + 28xm^{2}n - 6xm^{2} - 8xmn \)
6. \( 6x^{8} - 5x^{4}y^{2} - 6y^{4} \)
7. \( 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución