Berilgan tenglamalar sistemasini tekshiring, birgalikda bo'lgan sistemani quyidagi usullarda hisoblang. \( \begin{array}{ll}\text { 1) Matritsa usuli } \\ \text { 2) Gauss ususli } \\ \text { 3) Gauss-Jordan usuli } \\ \text { a) }\left\{\begin{array}{cl}2 x_{1}+x_{2}-5 x_{3}=10, \\ 3 x_{1}-3 x_{2}+4 x_{3}=1, \\ x_{1}+11 x_{2}-14 x_{3}=18\end{array}\right. & \text { b) }\left\{\begin{array}{c}x_{1}-3 x_{2}-x_{3}=1 \\ 2 x_{1}+x_{2}+x_{3}=-7 \\ 2 x_{1}-x_{2}-3 x_{3}=5\end{array}\right.\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Sizga menga berilgan tenglamalar sistemasini yechishda yordam berishdan mamnunman! Keling, birgalikda hisoblaymiz. Sistemani matritsa usuli orqali yechish uchun, biz tenglamalarni matritsa ko'rinishida ifodalaymiz. Masalan, `a` tizimi uchun, koeffitsiyentlar matritsasi va erkin a'zolar vektori quyidagicha ko'rinishda bo'ladi: \[ \begin{pmatrix} 2 & 1 & -5 \\ 3 & -3 & 4 \\ 1 & 11 & -14 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 10 \\ 1 \\ 18 \end{pmatrix} \] Ikkinchi misolni, ya'ni `b` tizimini yechish uchun, xuddi shunday matritsa tayyorlaymiz. Keyin, yaxlit matritsa ustida Gauss usulida transformatsiyalar o'tkazamiz va natijalar amalga oshirilganda natijalarni chiqaramiz. Matritsalar usuli va Gauss usullari ko'p hollarda qo'llaniladi, lekin Gauss-Jordan usuli sizga har bir o'zgaruvchini osonlik bilan yechimini topish imkoniyatini beradi. Keling, u usulni ham o'rganylik! Matematikada o'sha asli ijobiy nuqtalarga erishish uchun juda ko'p usullar mavjud. O'zingizga qulay bo'lganini tanlang va tuting!