Pregunta
upstudy study bank question image url

Set up the formula to find the balance after 8 years for a total of \( \$ 12,000 \) invested at an annual interest rate of \( 9 \% \) compounded continuously. \( A=12,000\left(1+\frac{9}{365}\right)^{(365)(8)} \) \( A=12,000(e)^{(0.09)(8)} \) \( A=12,000\left(1+\frac{0.09}{365}\right)^{(365)(8)} \) \( A=12,000(e)^{(9)(8)} \)

Ask by Brewer Barnett. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 8 years is calculated using the formula \( A = 12,000 \times e^{0.09 \times 8} \), which equals approximately \$24,653.20.

Solución

To find the balance after 8 years for a total of $12,000 invested at an annual interest rate of 9% compounded continuously, we can use the formula for continuous compounding: \[ A = P \times e^{r \times t} \] Where: - \( A \) is the balance after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate, - \( t \) is the time in years. Given: - \( P = \$12,000 \) - \( r = 9\% = 0.09 \) - \( t = 8 \) years Substitute the values into the formula: \[ A = 12,000 \times e^{0.09 \times 8} \] \[ A = 12,000 \times e^{0.72} \] Now, we can calculate the balance after 8 years using the formula. Calculate the value by following steps: - step0: Calculate: \(12000e^{0.72}\) - step1: Convert the expressions: \(12000e^{\frac{18}{25}}\) - step2: Rewrite the expression: \(12000\sqrt[25]{e^{18}}\) The balance after 8 years for a total of $12,000 invested at an annual interest rate of 9% compounded continuously is approximately $24,653.20.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find balance after 8 years for an investment with continuous compounding, you will need to use the formula: \( A = Pe^{rt} \), where \( P \) is the principal amount (\$12,000), \( r \) is the annual interest rate (0.09), and \( t \) is the time in years (8). Plugging in the numbers, the formula becomes \( A = 12,000 e^{(0.09)(8)} \). Imagine how people have leveraged this kind of compounding in real life! Think about retirement funds or education savings plans where money in accounts grows exponentially over time. This strategy takes advantage of the “snowball effect,” where interest is earned on both the initial investment and the interest that accumulates. With 9% compounded continuously, that $12,000 can transform into a significantly larger sum, helping to turn dreams into reality.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad