Pregunta
upstudy study bank question image url

1.1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cos B+\sin A \sin B \)

Ask by Schmidt Park. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the evaluated results for each part: 1. **(i)** - \( \cos(A - B) = 0.8660 \) - \( \cos A - \cos B = -0.3660 \) - \( \cos A \cos B + \sin A \sin B = 0.8660 \) 2. **(ii)** - \( \cos(A - B) = 0.5000 \) - \( \cos A - \cos B = -0.9848 \) - \( \cos A \cos B + \sin A \sin B = 0.5000 \) 3. **(iii)** - \( \cos(A - B) = 0.0000 \) - \( \cos A - \cos B = 0.0000 \) - \( \cos A \cos B + \sin A \sin B = 0.0000 \) These calculations confirm the trigonometric identity \( \cos(A - B) = \cos A \cos B + \sin A \sin B \) for each angle pair.

Solución

Certainly! Let's evaluate each part for the given pairs of angles using a calculator. We'll provide approximate values rounded to four decimal places. --- ### Given Angle Pairs: 1. **(i)** \( A = 60^{\circ} \), \( B = 30^{\circ} \) 2. **(ii)** \( A = 110^{\circ} \), \( B = 50^{\circ} \) 3. **(iii)** \( A = 225^{\circ} \), \( B = 135^{\circ} \) --- ### Part (a): Evaluate \( \cos(A - B) \) 1. **(i)** \( \cos(A - B) = \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.8660 \) 2. **(ii)** \( \cos(A - B) = \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) = 0.5000 \) 3. **(iii)** \( \cos(A - B) = \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0.0000 \) --- ### Part (b): Evaluate \( \cos A - \cos B \) 1. **(i)** \[ \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) \approx 0.5000 - 0.8660 = -0.3660 \] 2. **(ii)** \[ \cos A - \cos B = \cos(110^{\circ}) - \cos(50^{\circ}) \approx (-0.3420) - 0.6428 = -0.9848 \] 3. **(iii)** \[ \cos A - \cos B = \cos(225^{\circ}) - \cos(135^{\circ}) \approx (-0.7071) - (-0.7071) = 0.0000 \] --- ### Part (c): Evaluate \( \cos A \cos B + \sin A \sin B \) This expression is equivalent to \( \cos(A - B) \) based on the cosine difference identity. However, we'll compute it directly for verification. 1. **(i)** \[ \cos A \cos B + \sin A \sin B = \cos(60^{\circ}) \cos(30^{\circ}) + \sin(60^{\circ}) \sin(30^{\circ}) \approx (0.5000)(0.8660) + (0.8660)(0.5000) = 0.4330 + 0.4330 = 0.8660 \] 2. **(ii)** \[ \cos A \cos B + \sin A \sin B = \cos(110^{\circ}) \cos(50^{\circ}) + \sin(110^{\circ}) \sin(50^{\circ}) \approx (-0.3420)(0.6428) + (0.9397)(0.7660) = -0.2197 + 0.7200 = 0.5003 \approx 0.5000 \] 3. **(iii)** \[ \cos A \cos B + \sin A \sin B = \cos(225^{\circ}) \cos(135^{\circ}) + \sin(225^{\circ}) \sin(135^{\circ}) \approx (-0.7071)(-0.7071) + (-0.7071)(0.7071) = 0.5000 - 0.5000 = 0.0000 \] --- ### Summary of Results: | **Part (a)** \( \cos(A - B) \) | **Part (b)** \( \cos A - \cos B \) | **Part (c)** \( \cos A \cos B + \sin A \sin B \) | |-------------------------------|-------------------------------------|---------------------------------------------------| | **(i)**  0.8660 | **(i)**  –0.3660 | **(i)**  0.8660 | | **(ii)** 0.5000 | **(ii)** –0.9848 | **(ii)** 0.5000 | | **(iii)** 0.0000 | **(iii)** 0.0000 | **(iii)** 0.0000 | --- These results confirm the trigonometric identity \( \cos(A - B) = \cos A \cos B + \sin A \sin B \) as seen in Parts (a) and (c) for each angle pair.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's go through the given pairs of angles one by one and calculate the required values. ### For \( A = 60^{\circ} \) and \( B = 30^{\circ} \): 1. **(a)** \( \cos (A-B) = \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \) 2. **(b)** \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) = \frac{1}{2} - \frac{\sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2} \) 3. **(c)** \( \cos A \cos B + \sin A \sin B = \cos(60^{\circ}) \cos(30^{\circ}) + \sin(60^{\circ}) \sin(30^{\circ}) = \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2} \cdot \frac{1}{2}\right) = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \) ### For \( A = 110^{\circ} \) and \( B = 50^{\circ} \): 1. **(a)** \( \cos (A-B) = \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) = \frac{1}{2} \) 2. **(b)** \( \cos A - \cos B = \cos(110^{\circ}) - \cos(50^{\circ}) \approx -0.342 - 0.643 = -0.985 \) 3. **(c)** \( \cos A \cos B + \sin A \sin B = \cos(110^{\circ}) \cos(50^{\circ}) + \sin(110^{\circ}) \sin(50^{\circ}) \approx -0.342 \cdot 0.643 + 0.939 \cdot 0.766 \approx -0.220 + 0.719 = 0.499 \) ### For \( A = 225^{\circ} \) and \( B = 135^{\circ} \): 1. **(a)** \( \cos (A-B) = \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0 \) 2. **(b)** \( \cos A - \cos B = \cos(225^{\circ}) - \cos(135^{\circ}) = -\frac{\sqrt{2}}{2} - (-\frac{\sqrt{2}}{2}) = 0 \) 3. **(c)** \( \cos A \cos B + \sin A \sin B = \cos(225^{\circ}) \cos(135^{\circ}) + \sin(225^{\circ}) \sin(135^{\circ}) = \left(-\frac{\sqrt{2}}{2} \cdot -\frac{\sqrt{2}}{2}\right) + \left(-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right) = \frac{1}{2} - \frac{1}{2} = 0 \) Thus, the calculations yield the following results: 1. For \( (A=60^{\circ}, B=30^{\circ}) \): - \( (a) \ \frac{\sqrt{3}}{2}, \ (b) \ \frac{1 - \sqrt{3}}{2}, \ (c) \ \frac{\sqrt{3}}{2} \) 2. For \( (A=110^{\circ}, B=50^{\circ}) \): - \( (a) \ \frac{1}{2}, \ (b) \ -0.985, \ (c) \ 0.499 \) 3. For \( (A=225^{\circ}, B=135^{\circ}) \): - \( (a) \ 0, \ (b) \ 0, \ (c) \ 0 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad