Pregunta
upstudy study bank question image url

Question 10, 1,2.60 WW Eceres Casty, of i2 of to ponts Ponter off 1 A tree oasts a shadow 30 ft long. At the same time, the shadow cast by a vertical 5 -ff pole is 4 ff long. Find the height of the tree. The tree's height is \( \square \) f.

Ask by Ortiz West. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The tree's height is 37.5 feet.

Solución

To determine the height of the tree, we can use the concept of similar triangles. Both the tree and the pole cast shadows under the same lighting conditions, which means the ratios of their heights to the lengths of their shadows are equal. Let's denote: - \( h \) = height of the tree (in feet) - Given: - Shadow of the tree = 30 ft - Height of the pole = 5 ft - Shadow of the pole = 4 ft Using the similarity of triangles: \[ \frac{\text{Height of the tree}}{\text{Shadow of the tree}} = \frac{\text{Height of the pole}}{\text{Shadow of the pole}} \] Plugging in the known values: \[ \frac{h}{30} = \frac{5}{4} \] Solving for \( h \): \[ h = 30 \times \frac{5}{4} = 37.5 \, \text{ft} \] **The tree's height is \( 37.5 \) ft.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, you can use the concept of similar triangles. Since the sun’s rays create similar angles with both the tree and the pole, the ratios of their heights to their shadow lengths will be the same. Here’s the math: Let the height of the tree be \( h \) ft. Using the ratios, we have: \[ \frac{h}{30} = \frac{5}{4} \] Now, cross-multiply to solve for \( h \): \[ 4h = 150 \quad \Rightarrow \quad h = \frac{150}{4} = 37.5 \text{ ft} \] So, the height of the tree is \( 37.5 \) ft. To make this concept stick, think about how similar triangles show up everywhere—like when you look at buildings and their shadows or even in your backyard with your garden! Understanding proportions can really help visualize the relationships in everyday life. If you'd like to dive deeper into similar triangles, consider exploring geometry resources that relate to real-world applications, such as navigation or architecture. You'll be amazed at how often these principles come into play!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad