Pregunta
upstudy study bank question image url

Question 11 (5 points) Determine where the function \( f(x)=\frac{x^{2}+7}{x^{2}+x-6} \) is continuous. \( (-3, \infty) \) \( (-\infty,-3) \cup(2, \infty) \) \( (-\infty, 2) \) \( (-3,2) \cup(2, \infty) \) \( (-\infty,-3) \cup(-3,2) \) \( (-\infty,-3) \cup(-3,2) \cup(2, \infty) \)

Ask by Delgado Todd. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{x^{2} + 7}{x^{2} + x - 6} \) is continuous on the intervals \( (-\infty, -3) \), \( (-3, 2) \), and \( (2, \infty) \).

Solución

To determine where the function \( f(x) = \frac{x^{2} + 7}{x^{2} + x - 6} \) is continuous, we need to identify where the denominator is not zero, as division by zero is undefined. 1. **Find the zeros of the denominator:** \[ x^{2} + x - 6 = 0 \] Solving this quadratic equation: \[ x = \frac{-1 \pm \sqrt{1 + 24}}{2} = \frac{-1 \pm 5}{2} \] So, the solutions are: \[ x = 2 \quad \text{and} \quad x = -3 \] 2. **Determine the intervals of continuity:** The function \( f(x) \) is continuous everywhere except at the points where the denominator is zero, which are \( x = -3 \) and \( x = 2 \). Therefore, the intervals where \( f(x) \) is continuous are: \[ (-\infty, -3) \cup (-3, 2) \cup (2, \infty) \] **Final Answer:** \(\boxed{\,(-\infty,-3)\cup(-3,2)\cup(2,\infty)\,}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine where the function \( f(x)=\frac{x^{2}+7}{x^{2}+x-6} \) is continuous, we first need to identify any discontinuities. The function is continuous wherever the denominator is not zero. The denominator can be factored as: \[ x^{2}+x-6 = (x-2)(x+3) \] Setting the denominator equal to zero gives us the critical points \( x=2 \) and \( x=-3 \). Therefore, the function is undefined at these points. The function \( f(x) \) is continuous in the intervals where the denominator does not result in zero. This results in the following intervals of continuity: 1. \( (-\infty, -3) \) 2. \( (-3, 2) \) 3. \( (2, \infty) \) Combining these intervals, the function is continuous on: \[ (-\infty, -3) \cup (-3, 2) \cup (2, \infty) \] So, the correct answer is: \[ (-\infty,-3) \cup(-3,2) \cup(2, \infty) \] Now for some extra relevant tidbits! Did you know that the rational function like \( f(x) \) can often show interesting behavior when you graph them? They typically have vertical asymptotes at points where the denominator is zero, like here at \( x = -3 \) and \( x = 2 \). As a result, the function will spike up or down infinitely around those vertical lines! For the math enthusiasts out there, if you're ever stuck on identifying discontinuities, it helps to remember that factoring is your best buddy! Always break down polynomial expressions to find the critical points, and don't forget to check what happens at those points for insight into the behavior of the function!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad