Pregunta
1. [-/1 Points] DETAILS MY NOTES TGEIALG6 5.8 Perform the division. (Simplify your answer completely.) \( \left(a^{2}-25\right) \div(a+5) \) SUBMIT ANSWER
Ask by Reid Mcfarlane. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( a - 5 \)
Solución
To simplify the division \(\frac{a^{2} - 25}{a + 5}\), follow these steps:
1. **Factor the numerator**:
\[
a^{2} - 25 = (a - 5)(a + 5)
\]
2. **Set up the division**:
\[
\frac{(a - 5)(a + 5)}{a + 5}
\]
3. **Cancel out the common term \((a + 5)\)**:
\[
a - 5 \quad \text{(assuming } a \neq -5\text{)}
\]
**Final Answer**:
\[
a - 5
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To perform the division \( \left(a^{2}-25\right) \div(a+5) \), first notice that \( a^2 - 25 \) can be factored as a difference of squares: \( (a - 5)(a + 5) \). Now, you rewrite the expression as: \[ \frac{(a - 5)(a + 5)}{(a + 5)} \] Since \( a + 5 \) is in both the numerator and the denominator, it can be canceled out (as long as \( a \neq -5 \)). This simplifies to: \[ a - 5 \] So, the simplified answer is \( a - 5 \) (assuming \( a \neq -5 \)).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium