Solve the equation by using the quadratic formula \( x^{2}+8 x+5=0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the equation \( x^{2} + 8x + 5 = 0 \) using the quadratic formula, which is \( x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \), identify the coefficients \( a = 1 \), \( b = 8 \), and \( c = 5 \). Plugging in these values: 1. Calculate the discriminant: \( b^2 - 4ac = 8^2 - 4(1)(5) = 64 - 20 = 44 \). 2. Now, use the quadratic formula: \( x = \frac{{-8 \pm \sqrt{44}}}{2(1)} = \frac{{-8 \pm 2\sqrt{11}}}{2} = -4 \pm \sqrt{11} \). Thus, the solutions are \( x = -4 + \sqrt{11} \) and \( x = -4 - \sqrt{11} \). Now you have your two solutions. Happy solving!