Pregunta
upstudy study bank question image url

Geometric
Determine the value of P if
rove that for any arithmetic sequence of which the first term is and the constant
lifference is , the sum to terms can be expressed as .

Ask by Savage Delgado. in South Africa
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For any arithmetic sequence with first term and common difference , the sum of the first terms is .

Solución

Certainly! Let’s address both parts of your query step by step.

1. Determining the Value of

Understanding the Series

The given sum is a geometric series where each term is of the form for ranging from 1 to 13.

Rewriting the Series

First, let’s simplify the expression inside the summation:
Therefore, the sum can be rewritten as:

Calculating the Geometric Series

The sum is a geometric series with:
  • First term ( ):
  • Common ratio ( ): 3
  • Number of terms ( ): 13
The sum of the first terms of a geometric series is given by:
Plugging in the values:

Final Calculation of

Now, substitute back to find :
Simplify :
Thus,
Answer:

2. Proving the Sum Formula for an Arithmetic Sequence

Given:

An arithmetic sequence with:
  • First term ( )
  • Common difference ( )
  • Number of terms ( )

To Prove:

Proof:

Consider the arithmetic sequence:
Sum of the first terms ( ):
Writing the sum in reverse order:
Adding the two expressions term by term:
Each pair sums to:
Since there are such pairs (because each term is paired once):
Solving for :
Thus, the formula is proven.

Conclusion: We’ve determined that and successfully proved the sum formula for an arithmetic sequence.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the value of , notice that can be rewritten as . The inner sum is a geometric series with the first term (when ) and the last term . Using the formula for the sum of a geometric series, , where , , and , you get .
The formula for the sum of the first terms, , derives from the concept of pairing terms. If you write out the first terms of an arithmetic sequence, you’ll start with and end with . When you sum the sequence forwards and backwards, you notice that each pair sums to the same total: , which leads to such pairs. Thus, the formula provides a compact means to find the sum efficiently.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad