Pregunta
\( 1 \leftarrow \quad \) Solve the quadratic equation \( 36=(x+4)^{2} \)
Ask by Ross Best. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solutions are \( x = 2 \) and \( x = -10 \).
Solución
To solve the quadratic equation:
\[
36 = (x + 4)^2
\]
**Step 1: Take the Square Root of Both Sides**
\[
\sqrt{36} = \sqrt{(x + 4)^2}
\]
\[
6 = |x + 4|
\]
This implies two possible equations:
\[
x + 4 = 6 \quad \text{or} \quad x + 4 = -6
\]
**Step 2: Solve Each Equation Separately**
1. **First Equation:**
\[
x + 4 = 6
\]
Subtract 4 from both sides:
\[
x = 6 - 4
\]
\[
x = 2
\]
2. **Second Equation:**
\[
x + 4 = -6
\]
Subtract 4 from both sides:
\[
x = -6 - 4
\]
\[
x = -10
\]
**Solution:**
The quadratic equation \( 36 = (x + 4)^2 \) has two solutions:
\[
x = 2 \quad \text{and} \quad x = -10
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve the equation \( 36 = (x + 4)^{2} \), we first take the square root of both sides. This gives us two cases to consider: 1. \( x + 4 = 6 \) 2. \( x + 4 = -6 \) For the first case, subtracting 4 from both sides gives \( x = 2 \). For the second case, subtracting 4 gives \( x = -10 \). Thus, the solutions are \( x = 2 \) and \( x = -10 \)! Isn’t it neat how squaring an expression can lead to two different solutions? Quadratics often open up a world of possibilities!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium