Solve the inequality and give the solution in interval notation. \( 13 \leq 3-5 \mathrm{~g}<15 \) The answer in interval notation is (Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the compound inequality \( 13 \leq 3 - 5g < 15 \), we can break it down into two separate inequalities: 1. For \( 13 \leq 3 - 5g \): - Subtract 3 from both sides: \( 10 \leq -5g \) - Divide by -5 (remembering to reverse the inequality): \( g \leq -2 \) 2. For \( 3 - 5g < 15 \): - Subtract 3 from both sides: \( -5g < 12 \) - Divide by -5 (again, reversing the inequality): \( g > -\frac{12}{5} \) Now we have the combined solution: \( -\frac{12}{5} < g \leq -2 \). In interval notation, the solution is: \((- \frac{12}{5}, -2]\).