Pregunta
upstudy study bank question image url

Prove that a finite dimensional vector space V has dimension n if and only if n is the maximum number of linearly independent vectors in any subset of V . सिद्ध कीजिए कि एक परिमित आयामी सदिश समष्टि V का आयाम \( n \) है यदि और केवल यदि \( n, \mathrm{~V} \) के किसी उपसमुच्चय में रैखिक रूप से स्वतंत्र सदिशों की अधिकतम संख्या है।

Ask by Lindsey Mcguire. in India
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A finite-dimensional vector space \( V \) has dimension \( n \) if and only if \( n \) is the maximum number of linearly independent vectors in any subset of \( V \).

Solución

To prove that a finite-dimensional vector space \( V \) has dimension \( n \) if and only if \( n \) is the maximum number of linearly independent vectors in any subset of \( V \), we will establish both implications: 1. **If \( V \) has dimension \( n \), then no subset of \( V \) contains more than \( n \) linearly independent vectors.** 2. **If the maximum number of linearly independent vectors in any subset of \( V \) is \( n \), then the dimension of \( V \) is \( n \).** Let's proceed with each part of the proof. --- ### Part 1: Dimension \( n \) Implies Maximum of \( n \) Linearly Independent Vectors **Assumption:** \( V \) is a finite-dimensional vector space with dimension \( n \). This means there exists a basis for \( V \) consisting of exactly \( n \) vectors. **To Prove:** Any linearly independent subset of \( V \) contains at most \( n \) vectors. **Proof:** 1. Let \( \{v_1, v_2, \dots, v_k\} \) be a linearly independent subset of \( V \). 2. Consider extending this subset to a basis for \( V \). Since \( V \) has dimension \( n \), any basis of \( V \) has exactly \( n \) vectors. 3. Since \( \{v_1, v_2, \dots, v_k\} \) is linearly independent, it can be extended to a basis by adding \( n - k \) additional vectors, assuming \( k \leq n \). 4. If \( k > n \), then having more than \( n \) linearly independent vectors would contradict the fact that the maximum size of a basis is \( n \). 5. Therefore, \( k \leq n \). Hence, any linearly independent subset of \( V \) contains at most \( n \) vectors. --- ### Part 2: Maximum of \( n \) Linearly Independent Vectors Implies Dimension \( n \) **Assumption:** In the vector space \( V \), the maximum number of linearly independent vectors in any subset is \( n \). **To Prove:** The dimension of \( V \) is \( n \). **Proof:** 1. Since there exists a subset of \( V \) with \( n \) linearly independent vectors (by the assumption that the maximum number is \( n \)), let \( \{v_1, v_2, \dots, v_n\} \) be such a set. 2. We need to show that this set is a basis for \( V \), i.e., that it spans \( V \). 3. Suppose, for contradiction, that \( \{v_1, v_2, \dots, v_n\} \) does not span \( V \). Then, there exists a vector \( v_{n+1} \in V \) that is not in the span of \( \{v_1, v_2, \dots, v_n\} \). 4. This implies that \( \{v_1, v_2, \dots, v_n, v_{n+1}\} \) is a linearly independent set with \( n + 1 \) vectors. 5. However, this contradicts the assumption that the maximum number of linearly independent vectors in any subset of \( V \) is \( n \). 6. Therefore, our assumption is false, and \( \{v_1, v_2, \dots, v_n\} \) must span \( V \). 7. Since the set is both linearly independent and spans \( V \), it is a basis for \( V \). 8. Hence, the dimension of \( V \) is \( n \). --- ### Conclusion We have shown both directions: - If \( V \) has dimension \( n \), then no subset of \( V \) contains more than \( n \) linearly independent vectors. - If no subset of \( V \) contains more than \( n \) linearly independent vectors, then the dimension of \( V \) is \( n \). Therefore, a finite-dimensional vector space \( V \) has dimension \( n \) if and only if \( n \) is the maximum number of linearly independent vectors in any subset of \( V \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

सिद्धांत की शुरुआत इस बात से होती है कि यदि \( V \) का आयाम \( n \) है, तो \( V \) में \( n \) रैखिक रूप से स्वतंत्र सदिश हैं और इससे अधिक रैखिक स्वतंत्र सदिश नहीं हो सकते। अगर हम \( V \) के किसी उपसमुच्चय को लें जिसमें \( n \) से अधिक सदिश हैं, तो ये सदिश अवश्य रैखिक रूप से निर्भर होंगे। इसी प्रकार, यदि \( V \) में रैखिक रूप से स्वतंत्र सदिशों की अधिकतम संख्या \( n \) है, तो \( V \) का आयाम भी \( n \) होगा। यह दोनों दिशा में सिद्ध होता है। अब विचार करें कि यदि \( V \) का आयाम \( n \) है, तो एक आधार में \( n \) रैखिक रूप से स्वतंत्र सदिश होते हैं। ये \( V \) के किसी भी उपसमुच्चय में अधिकतम रैखिक स्वतंत्र सदिश हैं। यदि हम कोई और सदिश जोड़ते हैं, तो वे स्वाभाविक रूप से निर्भर होंगे। इस प्रकार, हम पाएंगे कि \( n \) रैखिक रूप से स्वतंत्र सदिश, \( V \) के लिए अधिकतम है।

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad