Pregunta
upstudy study bank question image url

1.1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \) 1.2 Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) \( 1.3 \quad \) Using your \( \operatorname{comparison} \) in Question \( 1.2 \cdot \), what general \( \operatorname{conclusion} \operatorname{con} \) be made regarding \( \cos (A-B), \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) for any values of \( A \) and \( B \) ?

Ask by Estrada Ford. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For any angles \( A \) and \( B \), the expressions \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are always equal. However, \( \cos A - \cos B \) is generally different from these two expressions, except in specific cases.

Solución

Let's tackle each part of the problem systematically. ## **1.1 Evaluations Using a Calculator** Given three pairs of angles: 1. **(i)** \( A = 60^\circ \) and \( B = 30^\circ \) 2. **(ii)** \( A = 110^\circ \) and \( B = 50^\circ \) 3. **(iii)** \( A = 225^\circ \) and \( B = 135^\circ \) We'll evaluate the following expressions for each pair: - **(a)** \( \cos(A - B) \) - **(b)** \( \cos A - \cos B \) - **(c)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) ### **(a) Evaluating \( \cos(A - B) \)** Using the angle difference, calculate \( A - B \) and then find the cosine: 1. **(i)** \[ A - B = 60^\circ - 30^\circ = 30^\circ \\ \cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.8660 \] 2. **(ii)** \[ A - B = 110^\circ - 50^\circ = 60^\circ \\ \cos(60^\circ) = 0.5 \] 3. **(iii)** \[ A - B = 225^\circ - 135^\circ = 90^\circ \\ \cos(90^\circ) = 0 \] ### **(b) Evaluating \( \cos A - \cos B \)** Calculate the cosine of each angle and then subtract: 1. **(i)** \[ \cos(60^\circ) = 0.5 \\ \cos(30^\circ) \approx 0.8660 \\ \cos A - \cos B = 0.5 - 0.8660 = -0.3660 \] 2. **(ii)** \[ \cos(110^\circ) \approx -0.3420 \quad (\text{since } 110^\circ \text{ is in the second quadrant}) \\ \cos(50^\circ) \approx 0.6428 \\ \cos A - \cos B = -0.3420 - 0.6428 = -0.9848 \] 3. **(iii)** \[ \cos(225^\circ) \approx -0.7071 \quad (\text{since } 225^\circ \text{ is in the third quadrant}) \\ \cos(135^\circ) \approx -0.7071 \quad (\text{since } 135^\circ \text{ is in the second quadrant}) \\ \cos A - \cos B = -0.7071 - (-0.7071) = 0 \] ### **(c) Evaluating \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** This expression is derived from the cosine of a difference identity, \( \cos(A - B) = \cos A \cos B + \sin A \sin B \). Let's compute it to verify: 1. **(i)** \[ \cos(60^\circ) = 0.5, \quad \cos(30^\circ) \approx 0.8660 \\ \sin(60^\circ) \approx 0.8660, \quad \sin(30^\circ) = 0.5 \\ \cos A \cdot \cos B + \sin A \cdot \sin B = (0.5)(0.8660) + (0.8660)(0.5) = 0.4330 + 0.4330 = 0.8660 \] 2. **(ii)** \[ \cos(110^\circ) \approx -0.3420, \quad \cos(50^\circ) \approx 0.6428 \\ \sin(110^\circ) \approx 0.9397, \quad \sin(50^\circ) \approx 0.7660 \\ \cos A \cdot \cos B + \sin A \cdot \sin B = (-0.3420)(0.6428) + (0.9397)(0.7660) \approx -0.2197 + 0.7205 = 0.5008 \approx 0.5 \] 3. **(iii)** \[ \cos(225^\circ) \approx -0.7071, \quad \cos(135^\circ) \approx -0.7071 \\ \sin(225^\circ) \approx -0.7071, \quad \sin(135^\circ) \approx 0.7071 \\ \cos A \cdot \cos B + \sin A \cdot \sin B = (-0.7071)(-0.7071) + (-0.7071)(0.7071) \approx 0.5 - 0.5 = 0 \] ## **1.2 Comparison of Values** Let's summarize the results: | Pair | \( \cos(A - B) \) | \( \cos A - \cos B \) | \( \cos A \cdot \cos B + \sin A \cdot \sin B \) | |------|-------------------|------------------------|-----------------------------------------------| | (i) | 0.8660 | -0.3660 | 0.8660 | | (ii) | 0.5 | -0.9848 | 0.5 | | (iii)| 0 | 0 | 0 | **Observations:** - **\( \cos(A - B) \)** and **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** yield the **same values** for all angle pairs. - **\( \cos A - \cos B \)** generally **differs** from the other two expressions, except in specific cases (e.g., when \( A = B \) or when their cosines cancel out). ## **1.3 General Conclusion** Based on the comparisons: - The expression \( \cos(A - B) \) **always equals** \( \cos A \cdot \cos B + \sin A \cdot \sin B \). This is a fundamental trigonometric identity known as the **cosine of a difference identity**. - The expression \( \cos A - \cos B \) is **generally distinct** from \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \), except in particular cases where the values align due to specific angle relationships. **Therefore, for any angles \( A \) and \( B \):** \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] While \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are identically equal, \( \cos A - \cos B \) is generally not equal to these expressions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve these trigonometric expressions, we start by calculating them for each set of angles provided. For \( A=60^{\circ} \) and \( B=30^{\circ} \): (a) \( \cos(A-B) = \cos(30^{\circ}) \approx 0.866 \) (b) \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - \sqrt{3}/2 \approx -0.366 \) (c) \( \cos A \cdot \cos B + \sin A \cdot \sin B = \cos(60^{\circ})\cos(30^{\circ}) + \sin(60^{\circ})\sin(30^{\circ}) \approx 0.5 \cdot \sqrt{3}/2 + \sqrt{3}/2 \cdot 0.5 = 1 \) Following similar calculations for the other angles: For \( A=110^{\circ} \), \( B=50^{\circ} \): (a) \( \cos(A-B) = \cos(60^{\circ}) = 0.5 \) (b) \( \cos A - \cos B \approx -0.492 \) (c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0.5 \) For \( A=225^{\circ} \), \( B=135^{\circ} \): (a) \( \cos(A-B) = \cos(90^{\circ}) = 0 \) (b) \( \cos A - \cos B \approx 0 \) (c) \( \cos A \cdot \cos B + \sin A \cdot \sin B = -0.5 \) Comparing the values: 1. For \( 60^{\circ}, 30^{\circ} \): \( \cos(A-B) = 0.866\), while both \( \cos A - \cos B \approx -0.366 \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B = 1 \) do not match. 2. For \( 110^{\circ}, 50^{\circ} \): \( \cos(A-B) = 0.5 \) contrasts with \( \cos A - \cos B \approx -0.492 \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0.5 \). 3. For \( 225^{\circ}, 135^{\circ} \): Values show \( \cos(A-B) = 0\) and both others also lead to similar outcomes. In conclusion, \( \cos(A-B) \) is consistent with \( \cos A \cdot \cos B + \sin A \cdot \sin B \), reflecting the cosine of the difference and aligning with angle addition formulas. Meanwhile, \( \cos A - \cos B \) can differ significantly, illustrating that these expressions reflect unique relationships across angle values.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad