1.1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \) 1.2 Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) \( 1.3 \quad \) Using your \( \operatorname{comparison} \) in Question \( 1.2 \cdot \), what general \( \operatorname{conclusion} \operatorname{con} \) be made regarding \( \cos (A-B), \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) for any values of \( A \) and \( B \) ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve these trigonometric expressions, we start by calculating them for each set of angles provided. For \( A=60^{\circ} \) and \( B=30^{\circ} \): (a) \( \cos(A-B) = \cos(30^{\circ}) \approx 0.866 \) (b) \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - \sqrt{3}/2 \approx -0.366 \) (c) \( \cos A \cdot \cos B + \sin A \cdot \sin B = \cos(60^{\circ})\cos(30^{\circ}) + \sin(60^{\circ})\sin(30^{\circ}) \approx 0.5 \cdot \sqrt{3}/2 + \sqrt{3}/2 \cdot 0.5 = 1 \) Following similar calculations for the other angles: For \( A=110^{\circ} \), \( B=50^{\circ} \): (a) \( \cos(A-B) = \cos(60^{\circ}) = 0.5 \) (b) \( \cos A - \cos B \approx -0.492 \) (c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0.5 \) For \( A=225^{\circ} \), \( B=135^{\circ} \): (a) \( \cos(A-B) = \cos(90^{\circ}) = 0 \) (b) \( \cos A - \cos B \approx 0 \) (c) \( \cos A \cdot \cos B + \sin A \cdot \sin B = -0.5 \) Comparing the values: 1. For \( 60^{\circ}, 30^{\circ} \): \( \cos(A-B) = 0.866\), while both \( \cos A - \cos B \approx -0.366 \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B = 1 \) do not match. 2. For \( 110^{\circ}, 50^{\circ} \): \( \cos(A-B) = 0.5 \) contrasts with \( \cos A - \cos B \approx -0.492 \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0.5 \). 3. For \( 225^{\circ}, 135^{\circ} \): Values show \( \cos(A-B) = 0\) and both others also lead to similar outcomes. In conclusion, \( \cos(A-B) \) is consistent with \( \cos A \cdot \cos B + \sin A \cdot \sin B \), reflecting the cosine of the difference and aligning with angle addition formulas. Meanwhile, \( \cos A - \cos B \) can differ significantly, illustrating that these expressions reflect unique relationships across angle values.