Pregunta
upstudy study bank question image url

2 The first term of a geometric series is \( \frac{3}{128} \) and the 6 th term is \( \frac{3}{4} \). Determine: a the common ratio b the sum of the first 10 terms, conect to one decimal place. 3 The first term of a geometric series is 54 and the common ratio is \( \frac{1}{3} \). Calculate the value of \( n \) that will give a sum of 80 .

Ask by Vargas Clark. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 2:** - **a) Common Ratio:** 2 - **b) Sum of First 10 Terms:** 24.0 **Question 3:** - **Value of \( n \):** 4

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find the common ratio \( r \) of the geometric series, we can use the formula for the \( n \)th term, which is given by \( a_n = a_1 \cdot r^{n-1} \). According to your data, \( a_1 = \frac{3}{128} \) and \( a_6 = \frac{3}{4} \). Setting up the equation for the 6th term: \[ \frac{3}{4} = \frac{3}{128} \cdot r^{5}. \] Solving for \( r \), we rearrange to get \( r^{5} = \frac{128}{4} = 32 \), so \( r = 32^{(1/5)} = 2 \). Next, we can find the sum of the first 10 terms using the sum formula for a geometric series: \[ S_n = a_1 \frac{1 - r^n}{1 - r}. \] Plugging in our known values: \[ S_{10} = \frac{3}{128} \cdot \frac{1 - 2^{10}}{1 - 2} = \frac{3}{128} \cdot \frac{1 - 1024}{-1} = \frac{3}{128} \cdot \frac{-1023}{-1} = \frac{3 \cdot 1023}{128} \approx 24.0. \] For the second part, we need the sum \( S_n \) when the first term \( a_1 = 54 \) and the common ratio \( r = \frac{1}{3} \). The sum formula is again applicable: \[ S_n = a \frac{1 - r^n}{1 - r} = 54 \frac{1 - ( \frac{1}{3})^n}{1 - \frac{1}{3}}. \] Setting the sum to 80: \[ 80 = 54 \cdot \frac{1 - ( \frac{1}{3})^n}{\frac{2}{3}} = 81(1 - ( \frac{1}{3})^n). \] Rearranging gives: \[ \frac{80 \cdot \frac{2}{3}}{54} = 1 - ( \frac{1}{3})^n \implies 1 - ( \frac{1}{3})^n = \frac{160}{162} \implies ( \frac{1}{3})^n = \frac{2}{81} \implies n = 4. \] Historically, geometric series were utilized in ancient cultures for a multitude of practical applications, from calculating areas to solving complex problems in astronomy. They became formalized during the Middle Ages when mathematicians began to explore their properties, greatly influencing the fields of algebra and calculus. The geometric series' unique characteristics make it a valuable tool in various scientific domains, showcasing its longstanding significance. In real-world applications, geometric series play a crucial role in finance, especially when calculating compound interest or analyzing investments. The formula helps investors understand how money can grow over time. For instance, if you invest a certain amount and it grows at a consistent percentage, you can use geometric series to predict the future value of your investment accurately. Understanding this can empower better financial planning and decision-making.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad