Find the standard form of the equation of the circle having the following properties: Center at the origin Containing the point \( (-2,3) \) Type the standard form of the equation of this circle. \( \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
The standard form of the equation of a circle with its center at the origin \((0,0)\) is given by the formula \(x^2 + y^2 = r^2\), where \(r\) is the radius of the circle. To find the radius, we can use the distance formula to calculate the distance from the center to the point \((-2,3)\): \[ r = \sqrt{(-2 - 0)^2 + (3 - 0)^2} = \sqrt{4 + 9} = \sqrt{13}. \] Substituting \(r^2\) into the circle equation, we have: \[ x^2 + y^2 = 13. \] In standard form, the equation of the circle is \(x^2 + y^2 = 13\).