Pregunta
upstudy study bank question image url

\( \begin{array}{l} 2 x^{2}+3 x-1=0 \\ 2 x^{2}-30 x+25=0 \end{array} {} x^{2}-23 x+120=0 {} 16 x^{2}-24 x+9=0 \)

Ask by Savage Johnson. in Pakistan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equations are: 1. \( x = \frac{-3 \pm \sqrt{17}}{4} \) (approximately \( x \approx 0.2808 \) and \( x \approx -1.7808 \)) 2. \( x = \frac{15 \pm 5\sqrt{7}}{2} \) (approximately \( x \approx 14.1146 \) and \( x \approx 0.8854 \)) 3. \( x = 15 \) and \( x = 8 \) 4. \( x = \frac{3}{4} \)

Solución

Sure! Let's solve each of the quadratic equations you've provided. We'll use the quadratic formula for each, which is: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a \), \( b \), and \( c \) are coefficients from the quadratic equation \( ax^2 + bx + c = 0 \). --- ### 1. \( 2x^{2} + 3x - 1 = 0 \) **Coefficients:** - \( a = 2 \) - \( b = 3 \) - \( c = -1 \) **Discriminant (\( D \)):** \[ D = b^2 - 4ac = 3^2 - 4(2)(-1) = 9 + 8 = 17 \] **Solutions:** \[ x = \frac{-3 \pm \sqrt{17}}{2 \times 2} = \frac{-3 \pm \sqrt{17}}{4} \] **Approximate Values:** \[ x \approx \frac{-3 + 4.1231}{4} \approx \frac{1.1231}{4} \approx 0.2808 \] \[ x \approx \frac{-3 - 4.1231}{4} \approx \frac{-7.1231}{4} \approx -1.7808 \] --- ### 2. \( 2x^{2} - 30x + 25 = 0 \) **Coefficients:** - \( a = 2 \) - \( b = -30 \) - \( c = 25 \) **Discriminant (\( D \)):** \[ D = (-30)^2 - 4(2)(25) = 900 - 200 = 700 \] **Solutions:** \[ x = \frac{30 \pm \sqrt{700}}{2 \times 2} = \frac{30 \pm 10\sqrt{7}}{4} = \frac{15 \pm 5\sqrt{7}}{2} \] **Approximate Values:** \[ \sqrt{7} \approx 2.6458 \] \[ x \approx \frac{30 + 26.4583}{4} = \frac{56.4583}{4} \approx 14.1146 \] \[ x \approx \frac{30 - 26.4583}{4} = \frac{3.5417}{4} \approx 0.8854 \] --- ### 3. \( x^{2} - 23x + 120 = 0 \) **Coefficients:** - \( a = 1 \) - \( b = -23 \) - \( c = 120 \) **Discriminant (\( D \)):** \[ D = (-23)^2 - 4(1)(120) = 529 - 480 = 49 \] **Solutions:** \[ x = \frac{23 \pm \sqrt{49}}{2 \times 1} = \frac{23 \pm 7}{2} \] **Values:** \[ x = \frac{23 + 7}{2} = \frac{30}{2} = 15 \] \[ x = \frac{23 - 7}{2} = \frac{16}{2} = 8 \] --- ### 4. \( 16x^{2} - 24x + 9 = 0 \) **Coefficients:** - \( a = 16 \) - \( b = -24 \) - \( c = 9 \) **Discriminant (\( D \)):** \[ D = (-24)^2 - 4(16)(9) = 576 - 576 = 0 \] Since the discriminant is zero, there is **one real repeated root**. **Solution:** \[ x = \frac{24}{2 \times 16} = \frac{24}{32} = \frac{3}{4} \] **Alternatively, Factoring:** \[ 16x^2 - 24x + 9 = (4x - 3)^2 = 0 \implies 4x - 3 = 0 \implies x = \frac{3}{4} \] --- ### Summary of Solutions 1. **\( 2x^{2} + 3x - 1 = 0 \)** - \( x = \frac{-3 \pm \sqrt{17}}{4} \) - Approximately \( x \approx 0.2808 \) and \( x \approx -1.7808 \) 2. **\( 2x^{2} - 30x + 25 = 0 \)** - \( x = \frac{15 \pm 5\sqrt{7}}{2} \) - Approximately \( x \approx 14.1146 \) and \( x \approx 0.8854 \) 3. **\( x^{2} - 23x + 120 = 0 \)** - \( x = 15 \) and \( x = 8 \) 4. **\( 16x^{2} - 24x + 9 = 0 \)** - \( x = \frac{3}{4} \) If you have any further questions or need additional explanations for any of these solutions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the quadratic formula, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), is like a magical spell for solving any quadratic equation? This formula was first recorded in ancient Babylon around 2000 BC! Even though they didn’t have the notation we use today, they were already solving for \( x \) using geometric methods. It’s amazing how math transcends time and evolves through cultures! In real life, quadratic equations pop up in various scenarios, such as calculating the trajectory of projectiles or determining areas in land surveying. For instance, if you’re throwing a ball, its height at any time can be modeled by a quadratic equation. So next time you’re at the park tossing a ball, just remember that you’re applying some algebraic principles from centuries of mathematical journey!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad