Pregunta
1)) Which polynomial has zeros at \( x=-4, x=-2, x=1 \), and \( x=3 \) ? \( (x+4)^{2}(x-1)^{3} \) \( (x-4)^{2}(x+1)^{3} \) \( (x-4)(x-2)(x+1)(x+3) \) \( (x+4)(x+2)(x-1)(x-3) \)
Ask by Ward Mccarthy. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( (x+4)(x+2)(x-1)(x-3) \)
Solución
To determine which polynomial has zeros at \( x = -4, x = -2, x = 1 \), and \( x = 3 \), let's analyze each option:
1. **Option A:** \( (x + 4)^{2}(x - 1)^{3} \)
- **Zeros:**
- \( x = -4 \) (with multiplicity 2)
- \( x = 1 \) (with multiplicity 3)
- **Missing Zeros:** \( x = -2 \) and \( x = 3 \)
2. **Option B:** \( (x - 4)^{2}(x + 1)^{3} \)
- **Zeros:**
- \( x = 4 \) (with multiplicity 2)
- \( x = -1 \) (with multiplicity 3)
- **Missing Zeros:** \( x = -4, x = -2, x = 1, \) and \( x = 3 \)
3. **Option C:** \( (x - 4)(x - 2)(x + 1)(x + 3) \)
- **Zeros:**
- \( x = 4 \)
- \( x = 2 \)
- \( x = -1 \)
- \( x = -3 \)
- **Missing Zeros:** \( x = -4, x = -2, x = 1, \) and \( x = 3 \)
4. **Option D:** \( (x + 4)(x + 2)(x - 1)(x - 3) \)
- **Zeros:**
- \( x = -4 \)
- \( x = -2 \)
- \( x = 1 \)
- \( x = 3 \)
- **All Required Zeros Present**
**Conclusion:**
The correct polynomial that has zeros at \( x = -4, x = -2, x = 1 \), and \( x = 3 \) is:
**\( (x + 4)(x + 2)(x - 1)(x - 3) \)**
**Answer:**
\( (x+4)(x+2)(x-1)(x-3) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To determine which polynomial has zeros at \( x = -4, x = -2, x = 1, \) and \( x = 3 \), we can look at the factorization of the polynomials given as options. The correct polynomial must have factors corresponding to these zeros, meaning it can be expressed as \( (x + 4)(x + 2)(x - 1)(x - 3) \). Observing the polynomial choices, the last option, \( (x+4)(x+2)(x-1)(x-3) \), is the one that includes all the necessary factors for the specified zeros, confirming it as the correct answer. So, the answer is \( (x+4)(x+2)(x-1)(x-3) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium