Pregunta
upstudy study bank question image url

This week in school, there is a 75 percent probabiity of having a fire drill, a 50 percent probability of a tornado drill, and a 25 percent probability of having both drils. Let event \( F \) be a fire drill and event T be a tornado drill. Are the two events independent? No, because \( P(F \cap T) \neq P(F)=P(T) \). No, because \( P(F \cap T) \neq P(F)+P(T) \). Yes, because \( P(F \cap T)=P(F)=P(T) \). Yes, because \( P(F)=P(T)+P(F \cap T) \).

Ask by Salazar Rojas. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The events are not independent because the probability of both drills occurring together (\( P(F \cap T) = 25\% \)) does not equal the product of their individual probabilities (\( P(F) \times P(T) = 37.5\% \)).

Solución

To determine whether the events \( F \) (fire drill) and \( T \) (tornado drill) are independent, we need to check if the probability of both events occurring together equals the product of their individual probabilities. **Given:** - \( P(F) = 75\% = 0.75 \) - \( P(T) = 50\% = 0.50 \) - \( P(F \cap T) = 25\% = 0.25 \) **Independence Condition:** Two events \( F \) and \( T \) are independent if: \[ P(F \cap T) = P(F) \times P(T) \] Calculating the product of the individual probabilities: \[ P(F) \times P(T) = 0.75 \times 0.50 = 0.375 \] Comparing this with the given joint probability: \[ P(F \cap T) = 0.25 \neq 0.375 = P(F) \times P(T) \] Since \( P(F \cap T) \neq P(F) \times P(T) \), the events \( F \) and \( T \) are **not independent**. **Correct Answer:** No, because \( P(F \cap T) \neq P(F)P(T) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if the events are independent, we examine the relationship between the probabilities. For two events to be independent, the probability of both events occurring together should equal the product of their individual probabilities: \( P(F \cap T) = P(F) \cdot P(T) \). Here, \( P(F) = 0.75 \) and \( P(T) = 0.50 \), so \( P(F) \cdot P(T) = 0.75 \cdot 0.50 = 0.375 \). However, we are given \( P(F \cap T) = 0.25 \). Since \( 0.25 \neq 0.375 \), the events are indeed dependent! In real life, understanding the independence of events can prove useful in safety protocols. For instance, when planning drills in schools or workplaces, knowing if certain emergencies coincide can help in creating more effective safety plans. If fire and tornado drills are independent, preparations might differ, creating tailored responses that enhance safety outcomes during actual emergencies.

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad