ectile \( \begin{array}{l}\text { 19. An object moving horizontally with speed } v \text { falls off } \\ \text { the edge of a vertical cliff and lands a distance } d \\ \text { from the base of the cliff. How far from the base of } \\ \text { the cliff would the object land if the height of the } \\ \text { cliff was doubled? } \\ \begin{array}{ll}\text { A) } d & \text { B) } \sqrt{2} d \\ \text { C) } 2 d & \text { D) } 2 \sqrt{2} d \\ \text { E) } 4 d & \end{array}\end{array}> \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When an object falls off a cliff, its horizontal motion is independent of its vertical motion. The time it takes to hit the ground depends solely on the height of the cliff and is given by the equation \( t = \sqrt{\frac{2h}{g}} \), where \( h \) is the height and \( g \) is the acceleration due to gravity. If the height of the cliff is doubled, the time to fall becomes \( t = \sqrt{\frac{2(2h)}{g}} = \sqrt{2} \times \sqrt{\frac{2h}{g}} \). Thus, the object will spend more time in the air and travel further horizontally. If the horizontal speed \( v \) remains the same, and the fall takes \( \sqrt{2} \times t_1 \) (where \( t_1 \) is the original time), the new distance \( d' = v \times (\sqrt{2} \times t_1) = \sqrt{2} d \). Hence, the new distance from the base of the cliff is \( \sqrt{2} d \). So the answer is \( \text{B) } \sqrt{2} d \).