Pregunta
upstudy study bank question image url

ectile \( \begin{array}{l}\text { 19. An object moving horizontally with speed } v \text { falls off } \\ \text { the edge of a vertical cliff and lands a distance } d \\ \text { from the base of the cliff. How far from the base of } \\ \text { the cliff would the object land if the height of the } \\ \text { cliff was doubled? } \\ \begin{array}{ll}\text { A) } d & \text { B) } \sqrt{2} d \\ \text { C) } 2 d & \text { D) } 2 \sqrt{2} d \\ \text { E) } 4 d & \end{array}\end{array}> \).

Ask by Ruiz Lee. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

If the height of the cliff is doubled, the object will land \( \sqrt{2} \) times farther from the base. So, the answer is \( \sqrt{2}\, d \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

When an object falls off a cliff, its horizontal motion is independent of its vertical motion. The time it takes to hit the ground depends solely on the height of the cliff and is given by the equation \( t = \sqrt{\frac{2h}{g}} \), where \( h \) is the height and \( g \) is the acceleration due to gravity. If the height of the cliff is doubled, the time to fall becomes \( t = \sqrt{\frac{2(2h)}{g}} = \sqrt{2} \times \sqrt{\frac{2h}{g}} \). Thus, the object will spend more time in the air and travel further horizontally. If the horizontal speed \( v \) remains the same, and the fall takes \( \sqrt{2} \times t_1 \) (where \( t_1 \) is the original time), the new distance \( d' = v \times (\sqrt{2} \times t_1) = \sqrt{2} d \). Hence, the new distance from the base of the cliff is \( \sqrt{2} d \). So the answer is \( \text{B) } \sqrt{2} d \).

preguntas relacionadas

1. A stone is dropped from the top of a building and hits the ground travelling at Checkpoint 2 \( 45 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Ignore the effects of air resistance. Calculate the height of the building. 2. A ball is thrown upward at an unknown initial velocity. It takes \( 3,2 \mathrm{~s} \) to reach its highest point. Ignore the effects of air resistance. Calculate the initial velocity of the ball Exercise 2.1 Ignore the effects of air resistance. 1. A bomb falls out of an aircraft. To break the sound barrier of \( 340 \mathrm{~m} . \mathrm{s}^{-1} \) : a) how far does it need to fall? b) how long will this take? 2. A stone is thrown vertically upward from ground level with a velocity of \( 25 \mathrm{~m} . \mathrm{s}^{-1} \). Calculate: a) the maximum height reached. b) the time taken to reach its maximum height. 3. A stone is dropped from a bridge and is seen to splash into the water 3 s later. Calculate: a) the height of the bridge. b) the velocity with which the stone strikes the water. 4. A brick falls off a scaffold at a height of 80 m above the ground. Calculate: a) the magnitude of its velocity after falling for 2 s . b) the magnitude of its velocity when it hits the ground. c) the time taken to fall to the ground. 5. A stone, dropped from the top of a lighthouse, strikes the rocks below at a speed of \( 50 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate the height of the lighthouse. 6. A stone is thrown vertically upward and reaches a height of 10 m . a) What was the initial velocity of the stone as it left the thrower's hand?
Física South Africa Feb 04, 2025

Latest Physics Questions

1. A stone is dropped from the top of a building and hits the ground travelling at Checkpoint 2 \( 45 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Ignore the effects of air resistance. Calculate the height of the building. 2. A ball is thrown upward at an unknown initial velocity. It takes \( 3,2 \mathrm{~s} \) to reach its highest point. Ignore the effects of air resistance. Calculate the initial velocity of the ball Exercise 2.1 Ignore the effects of air resistance. 1. A bomb falls out of an aircraft. To break the sound barrier of \( 340 \mathrm{~m} . \mathrm{s}^{-1} \) : a) how far does it need to fall? b) how long will this take? 2. A stone is thrown vertically upward from ground level with a velocity of \( 25 \mathrm{~m} . \mathrm{s}^{-1} \). Calculate: a) the maximum height reached. b) the time taken to reach its maximum height. 3. A stone is dropped from a bridge and is seen to splash into the water 3 s later. Calculate: a) the height of the bridge. b) the velocity with which the stone strikes the water. 4. A brick falls off a scaffold at a height of 80 m above the ground. Calculate: a) the magnitude of its velocity after falling for 2 s . b) the magnitude of its velocity when it hits the ground. c) the time taken to fall to the ground. 5. A stone, dropped from the top of a lighthouse, strikes the rocks below at a speed of \( 50 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate the height of the lighthouse. 6. A stone is thrown vertically upward and reaches a height of 10 m . a) What was the initial velocity of the stone as it left the thrower's hand?
Física South Africa Feb 04, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad