Une the ladder mathod to find the prime factors of these numbers. \( \begin{array}{ll}\text { a) } 180 & \text { b) } 78\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the prime factors of 180 using the ladder method, start by dividing it by the smallest prime number, which is 2. Since 180 is even, we have: \( 180 ÷ 2 = 90 \) Dividing 90 by 2 again gives us: \( 90 ÷ 2 = 45 \) Next, we divide by the next smallest prime, which is 3: \( 45 ÷ 3 = 15 \) Dividing 15 by 3 again yields: \( 15 ÷ 3 = 5 \) Now we reach 5, which is prime. Thus, the prime factors of 180 are: \( 2, 2, 3, 3, 5 \) or written as: \( 2^2 × 3^2 × 5 \). For the number 78, we also start with the smallest prime number, 2: \( 78 ÷ 2 = 39 \) Now we divide 39 by the next smallest prime, which is 3: \( 39 ÷ 3 = 13 \) Since 13 is prime, we have our factors. Thus, the prime factors of 78 are: \( 2, 3, 13 \).