Determine the domain and range of the function \( f(x)=2 \sqrt[3]{108}^{2 x} \). \( \{x \mid \) all real numbers \( \} ;\{y \mid y>0\} \) \( \{x \mid \) all real numbers \( \} ;\{y \mid y \geq 0\} \) \( \{x \mid x>0\} ;\{y \mid \) all real numbers \( \} \) \( \{x \mid x \geq 0\} ;\{y \mid \) all real numbers \( \} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The function \( f(x) = 2 \sqrt[3]{108}^{2x} \) can be simplified to \( f(x) = 2 (108^{1/3})^{2x} = 2 \cdot 108^{(2/3)x} \). When we consider the domain of this function, since it is based on the real number exponentials and the base \( 108^{1/3} \) is positive, it can take any real number for \( x \). For the range, while the factor of 2 does affect the output, the power can still yield all positive values as the exponential component dominates. Hence, the outputs will always be positive. So, the domain is all real numbers, and the range consists of all positive values. In conclusion, the correct answer is: \( \{x \mid \) all real numbers \( \} ;\{y \mid y > 0\} \). History lovers will find that the cubic root dates back to ancient civilizations, including the Babylonians, who were solving cubic equations over 4000 years ago. They used practical methods to approximate roots—a fascinating blend of mathematics and mysticism! For those looking to apply this knowledge in real life, understanding exponents can aid in fields like finance, physics, and engineering, where exponential growth or decay is common. Whether you’re calculating compound interest or modeling population growth, a good grasp of functions like this can make you a wizard in quantitative problems!