Pregunta
Simplify the product. \[ \sqrt{3} \cdot \sqrt{12} \]
Ask by Curry Bradley. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The product simplifies to 6.
Solución
To simplify the product \(\sqrt{3} \cdot \sqrt{12}\), you can use the property of square roots that states:
\[
\sqrt{a} \cdot \sqrt{b} = \sqrt{a \times b}
\]
Let's apply this property step by step:
1. **Multiply the radicands (the numbers inside the square roots):**
\[
\sqrt{3} \cdot \sqrt{12} = \sqrt{3 \times 12}
\]
2. **Calculate the product inside the square root:**
\[
3 \times 12 = 36
\]
So,
\[
\sqrt{3 \times 12} = \sqrt{36}
\]
3. **Simplify the square root:**
\[
\sqrt{36} = 6
\]
**Therefore,**
\[
\sqrt{3} \cdot \sqrt{12} = 6
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify the product \(\sqrt{3} \cdot \sqrt{12}\), you can use the property of square roots that states \(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\). First, combine the square roots: \[ \sqrt{3} \cdot \sqrt{12} = \sqrt{3 \cdot 12} = \sqrt{36} \] Next, simplify \(\sqrt{36}\): \[ \sqrt{36} = 6 \] Thus, the simplified product is: \[ \sqrt{3} \cdot \sqrt{12} = 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium