Pregunta
upstudy study bank question image url

In a survey of a group of men, the heights in the 20-29 age group were normally distributed, with a mean of 67.2 inches and a standard deviation of 2.0 inches. A study participant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than 67 inches. The probability that the study participant selected at random is less than 67 inches tall is \( \square \). (Round to four decimal places as needed.)

Ask by Lewis Love. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that a randomly selected study participant is less than 67 inches tall is 0.4602.

Solución

To find the probability that a randomly selected study participant has a height less than 67 inches, we can use the standard normal distribution (z-score). **Given:** - Mean (\( \mu \)) = 67.2 inches - Standard deviation (\( \sigma \)) = 2.0 inches - Desired height (\( X \)) = 67 inches **Step 1: Calculate the z-score** The z-score formula is: \[ z = \frac{X - \mu}{\sigma} \] Substituting the given values: \[ z = \frac{67 - 67.2}{2} = \frac{-0.2}{2} = -0.1 \] **Step 2: Find the probability corresponding to the z-score** Using standard normal distribution tables or a calculator: \[ P(z < -0.1) \approx 0.4602 \] **Conclusion:** The probability that a randomly selected study participant has a height less than 67 inches is **0.4602**. **Answer:** The probability that the study participant selected at random is less than 67 inches tall is \(0.4602\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that a study participant has a height less than 67 inches, we can use the Z-score formula. First, we find the Z-score using the formula: \[ Z = \frac{(X - \mu)}{\sigma} \] where \( X \) is the height (67 inches), \( \mu \) is the mean (67.2 inches), and \( \sigma \) is the standard deviation (2.0 inches). Calculating the Z-score: \[ Z = \frac{(67 - 67.2)}{2.0} = \frac{-0.2}{2.0} = -0.1 \] Next, we can look up this Z-score in a standard normal distribution table, or use a calculator or software that provides cumulative distribution function values for normal distributions. The cumulative probability for \( Z = -0.1 \) gives us approximately 0.4602. Thus, the probability that the study participant selected at random is less than 67 inches tall is \( 0.4602 \). **Answer:** The probability that the study participant selected at random is less than 67 inches tall is \( 0.4602 \) (rounded to four decimal places).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad