Pregunta
(2) \( 3 \cdot 5^{x}+5^{x+1}=40 \) (4) \( \sqrt{9^{x+2}}-3^{x-1}=\frac{26}{27} \) (6) \( 4^{x}+16=10 \cdot 2^{x} \) (8) \( 16^{x}-3 \cdot 4^{x+1}=-32 \) (10) \( 5^{x}-5^{2-x}=24 \) (12) \( 3^{4 x}-12 \cdot 3^{2 x}+27=0 \)
Ask by Lambert Welch. in South Africa
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Here are the solutions to the equations:
1. **Problem (2):**
\[ x = 1 \]
2. **Problem (4):**
\[ x = -2 \]
3. **Problem (6):**
\[ x = 1 \quad \text{and} \quad x = 3 \]
4. **Problem (8):**
\[ x = 1 \quad \text{and} \quad x = \frac{3}{2} \]
5. **Problem (10):**
\[ x = 2 \]
6. **Problem (12):**
\[ x = \frac{1}{2} \quad \text{and} \quad x = 1 \]
If you need more detailed steps or explanations for any of these solutions, feel free to ask!
Solución
Sure, let's solve each of the given equations step by step.
---
### Problem (2)
**Equation:**
\[ 3 \cdot 5^{x} + 5^{x+1} = 40 \]
**Solution:**
1. Rewrite \(5^{x+1}\) as \(5 \cdot 5^x\):
\[ 3 \cdot 5^{x} + 5 \cdot 5^{x} = 40 \]
2. Factor out \(5^x\):
\[ 5^{x} (3 + 5) = 40 \]
\[ 5^{x} \cdot 8 = 40 \]
3. Solve for \(5^x\):
\[ 5^{x} = \frac{40}{8} = 5 \]
4. Since \(5^x = 5^1\), we have:
\[ x = 1 \]
**Answer:**
\[ x = 1 \]
---
### Problem (4)
**Equation:**
\[ \sqrt{9^{x+2}} - 3^{x-1} = \frac{26}{27} \]
**Solution:**
1. Express \(9^{x+2}\) in terms of base 3:
\[ 9^{x+2} = (3^2)^{x+2} = 3^{2x + 4} \]
2. Take the square root:
\[ \sqrt{3^{2x + 4}} = 3^{x + 2} \]
3. Rewrite the equation:
\[ 3^{x + 2} - 3^{x - 1} = \frac{26}{27} \]
4. Factor out \(3^{x - 1}\):
\[ 3^{x-1} (3^3 - 1) = \frac{26}{27} \]
\[ 3^{x-1} \cdot 26 = \frac{26}{27} \]
5. Solve for \(3^{x-1}\):
\[ 3^{x-1} = \frac{1}{27} = 3^{-3} \]
6. Equate the exponents:
\[ x - 1 = -3 \]
\[ x = -2 \]
**Answer:**
\[ x = -2 \]
---
### Problem (6)
**Equation:**
\[ 4^{x} + 16 = 10 \cdot 2^{x} \]
**Solution:**
1. Express \(4^x\) as \(2^{2x}\):
\[ 2^{2x} + 16 = 10 \cdot 2^{x} \]
2. Let \(y = 2^x\), then \(2^{2x} = y^2\):
\[ y^2 + 16 = 10y \]
3. Rearrange the equation:
\[ y^2 - 10y + 16 = 0 \]
4. Solve the quadratic equation:
\[ y = \frac{10 \pm \sqrt{100 - 64}}{2} = \frac{10 \pm 6}{2} \]
\[ y = 8 \quad \text{or} \quad y = 2 \]
5. Convert back to \(x\):
- For \(y = 8\):
\[ 2^x = 8 \Rightarrow x = 3 \]
- For \(y = 2\):
\[ 2^x = 2 \Rightarrow x = 1 \]
**Answer:**
\[ x = 1 \quad \text{and} \quad x = 3 \]
---
### Problem (8)
**Equation:**
\[ 16^{x} - 3 \cdot 4^{x+1} = -32 \]
**Solution:**
1. Express \(16^x\) and \(4^{x+1}\) in terms of base 4:
\[ 16^{x} = (4^2)^x = 4^{2x} \]
\[ 4^{x+1} = 4^x \cdot 4 = 4 \cdot 4^x \]
2. Let \(y = 4^x\), then:
\[ y^2 - 3 \cdot 4y = -32 \]
3. Rearrange the equation:
\[ y^2 - 12y + 32 = 0 \]
4. Solve the quadratic equation:
\[ y = \frac{12 \pm \sqrt{144 - 128}}{2} = \frac{12 \pm 4}{2} \]
\[ y = 8 \quad \text{or} \quad y = 4 \]
5. Convert back to \(x\):
- For \(y = 8\):
\[ 4^x = 8 \Rightarrow (2^2)^x = 2^3 \Rightarrow 2^{2x} = 2^3 \Rightarrow 2x = 3 \Rightarrow x = \frac{3}{2} \]
- For \(y = 4\):
\[ 4^x = 4 \Rightarrow x = 1 \]
**Answer:**
\[ x = 1 \quad \text{and} \quad x = \frac{3}{2} \]
---
### Problem (10)
**Equation:**
\[ 5^{x} - 5^{2 - x} = 24 \]
**Solution:**
1. Let \(y = 5^x\), then \(5^{2 - x} = \frac{25}{y}\):
\[ y - \frac{25}{y} = 24 \]
2. Multiply both sides by \(y\):
\[ y^2 - 25 = 24y \]
3. Rearrange the equation:
\[ y^2 - 24y - 25 = 0 \]
4. Solve the quadratic equation:
\[ y = \frac{24 \pm \sqrt{576 + 100}}{2} = \frac{24 \pm \sqrt{676}}{2} = \frac{24 \pm 26}{2} \]
\[ y = 25 \quad \text{or} \quad y = -1 \]
5. Since \(y = 5^x > 0\), discard \(y = -1\):
\[ 5^x = 25 \Rightarrow x = 2 \]
**Answer:**
\[ x = 2 \]
---
### Problem (12)
**Equation:**
\[ 3^{4x} - 12 \cdot 3^{2x} + 27 = 0 \]
**Solution:**
1. Let \(y = 3^{2x}\), then \(3^{4x} = y^2\):
\[ y^2 - 12y + 27 = 0 \]
2. Solve the quadratic equation:
\[ y = \frac{12 \pm \sqrt{144 - 108}}{2} = \frac{12 \pm \sqrt{36}}{2} = \frac{12 \pm 6}{2} \]
\[ y = 9 \quad \text{or} \quad y = 3 \]
3. Convert back to \(x\):
- For \(y = 9\):
\[ 3^{2x} = 9 \Rightarrow 3^{2x} = 3^2 \Rightarrow 2x = 2 \Rightarrow x = 1 \]
- For \(y = 3\):
\[ 3^{2x} = 3 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2} \]
**Answer:**
\[ x = \frac{1}{2} \quad \text{and} \quad x = 1 \]
---
If you have any further questions or need additional explanations, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The equation \( 3 \cdot 5^{x}+5^{x+1}=40 \) can be simplified as \( 3 \cdot 5^{x} + 5 \cdot 5^{x} = 40 \). This can be rewritten as \( 8 \cdot 5^{x} = 40 \), leading to \( 5^{x} = 5 \), hence \( x = 1 \). To solve \( 4^{x}+16=10 \cdot 2^{x} \), you can express \( 4^x \) as \( (2^2)^x = 2^{2x} \) and rewrite the equation as \( 2^{2x} + 16 = 10 \cdot 2^{x} \). This can be further solved by substituting \( y = 2^{x} \), giving \( y^2 - 10y + 16 = 0 \), which can be factored or solved using the quadratic formula.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium