Pregunta
upstudy study bank question image url

A square is plotted on a coordinate plane. Henry claims that any transformation on the square will preserve the length of its sides. Which of the following transformations could be used to show that Henry's claim is incorrect? Select all that apply. translation of 5 units to the right horizontal stretch by a factor of \( \frac{1}{3} \) dilation by a factor of 2 through the origin rotation of \( 45^{\circ} \) clockwise about the square's center a reflection over the \( x \)-axis

Ask by Mccarthy Young. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The transformations that change the square's side lengths are: - Horizontal stretch by a factor of \( \frac{1}{3} \) - Dilation by a factor of 2 through the origin

Solución

To determine which transformations could disprove Henry's claim that **any** transformation on a square preserves the length of its sides, let's analyze each option: 1. **Translation of 5 units to the right**: - **Effect**: Moves the square without altering its shape or size. - **Conclusion**: Preserves side lengths. 2. **Horizontal stretch by a factor of \( \frac{1}{3} \)**: - **Effect**: Compresses the square horizontally, reducing the length of the sides in the horizontal direction. - **Conclusion**: **Does not preserve** side lengths. 3. **Dilation by a factor of 2 through the origin**: - **Effect**: Scales the square uniformly, increasing the length of all sides by a factor of 2. - **Conclusion**: **Does not preserve** side lengths. 4. **Rotation of \( 45^{\circ} \) clockwise about the square's center**: - **Effect**: Rotates the square without changing its size or shape. - **Conclusion**: Preserves side lengths. 5. **Reflection over the \( x \)-axis**: - **Effect**: Flips the square over the \( x \)-axis without altering its size or shape. - **Conclusion**: Preserves side lengths. **Transformations that change the lengths of the square's sides** are the **horizontal stretch by a factor of \( \frac{1}{3} \)** and the **dilation by a factor of 2 through the origin**. These transformations demonstrate that Henry's claim is incorrect because they alter the side lengths of the square. **Final Answer:** • A horizontal stretch by a factor of \( \frac{1}{3} \) • Dilation by a factor of 2 through the origin

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Henry's claim can be challenged by certain transformations that change the dimensions of the square. The horizontal stretch by a factor of \( \frac{1}{3} \) would compress the square's width, thus altering its side lengths and proving Henry's claim incorrect. Similarly, a dilation by a factor of 2 through the origin would enlarge the square and also change the lengths of its sides, making it a valid example. On the other hand, transformations like translation, rotation, or reflection do not affect the lengths of the sides of the square. They merely reposition or reorient the square without stretching, shrinking, or altering its dimensions in a way that affects the lengths.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad