b) \( \frac{a^{2}-6 a+5}{a^{2}-15 a+56} \div \frac{a^{2}+2 a-35}{a^{2}-5 a-24} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \frac{a^{2}-6 a+5}{a^{2}-15 a+56} \div \frac{a^{2}+2 a-35}{a^{2}-5 a-24} \), we first rewrite the division as multiplication by the reciprocal: \[ \frac{a^{2}-6 a+5}{a^{2}-15 a+56} \times \frac{a^{2}-5 a-24}{a^{2}+2 a-35} \] Next, we factor each polynomial: 1. \( a^{2}-6 a+5 = (a-5)(a-1) \) 2. \( a^{2}-15 a+56 = (a-7)(a-8) \) 3. \( a^{2}+2 a-35 = (a+7)(a-5) \) 4. \( a^{2}-5 a-24 = (a-8)(a+3) \) Now we can substitute these factorizations into the expression: \[ \frac{(a-5)(a-1)}{(a-7)(a-8)} \times \frac{(a-8)(a+3)}{(a+7)(a-5)} \] Next, we can cancel out any common factors: - The factor \((a-5)\) in the numerator and denominator cancels. - The factor \((a-8)\) in the numerator and denominator also cancels. What remains is: \[ \frac{(a-1)(a+3)}{(a-7)(a+7)} \] Thus, the simplified expression is: \[ \frac{(a-1)(a+3)}{(a-7)(a+7)} \]