Let \( y=f(x) \) be the solution to the differential equation \( \frac{d y}{d x}=x+y \) with the initial condition \( f(1)=2 \). What is the approximation for \( f(2) \) if Euler's method is used, starting at \( x=1 \) with a step size of 0.5 ?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To use Euler's method to approximate \( f(2) \), we start at the initial condition \( (1, 2) \) and apply the differential equation given by \( \frac{dy}{dx} = x + y \). 1. At \( x=1 \), \( y=f(1)=2 \): \[ \frac{dy}{dx} = 1 + 2 = 3 \] The next value of \( y \) after a step of 0.5 is: \[ y_1 = y_0 + f'(x_0) \cdot \Delta x = 2 + 3 \cdot 0.5 = 2 + 1.5 = 3.5 \] Thus, at \( x=1.5 \), \( f(1.5) \approx 3.5 \). 2. Next, we continue to \( x=2 \): At \( x=1.5 \), \( y=f(1.5)\approx 3.5 \): \[ \frac{dy}{dx} = 1.5 + 3.5 = 5 \] The next value of \( y \) is: \[ y_2 = y_1 + f'(x_1) \cdot \Delta x = 3.5 + 5 \cdot 0.5 = 3.5 + 2.5 = 6 \] Thus, the approximation for \( f(2) \) using Euler's method is \( f(2) \approx 6 \).