Expand and simplify: \( \begin{array}{lll}\text { 1) } \\ \text { 3) } \\ \text { 3) } & (2 x+4)\left(x^{2}+2 x+3\right) & \text { (2) } \\ (x-1)\left(x^{2}-2 x+3\right) \\ \text { 5) } & (3 x-y)\left(2 x^{2}+4 x y-y^{2}\right) & \text { (4) } \\ & \text { (6) }(2 x-4)\left(x^{2}-3 x+1\right) \\ & & \end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Sure! Let's tackle each expression step by step. 1) For \( (2x + 4)(x^2 + 2x + 3) \): First, distribute \( (2x + 4) \) across \( (x^2 + 2x + 3) \): \[ 2x(x^2) + 2x(2x) + 2x(3) + 4(x^2) + 4(2x) + 4(3) = 2x^3 + 4x^2 + 6x + 4x^2 + 8x + 12 \] Combine like terms: \[ = 2x^3 + 8x^2 + 14x + 12 \] 2) For \( (x-1)(x^2-2x+3) \): Distributing \( (x-1) \) gives: \[ x(x^2) + x(-2x) + x(3) - 1(x^2) + 1(2x) - 1(3) = x^3 - 2x^2 + 3x - x^2 + 2x - 3 \] Combine like terms: \[ = x^3 - 3x^2 + 5x - 3 \] 3) For \( (3x-y)(2x^2+4xy-y^2) \): Distribute \( (3x-y) \): \[ 3x(2x^2) + 3x(4xy) + 3x(-y^2) - y(2x^2) - y(4xy) + y(y^2) = 6x^3 + 12x^2y - 3xy^2 - 2xy^2 - 4y^2x + y^3 \] Combine like terms: \[ = 6x^3 + 12xy^2 - 4xy^2 + y^3 = 6x^3 + 10xy^2 + y^3 \] 4) For \( (2x-4)(x^2-3x+1) \): Distributing \( (2x-4) \): \[ 2x(x^2) + 2x(-3x) + 2x(1) - 4(x^2) + 4(3x) - 4(1) = 2x^3 - 6x^2 + 2x - 4x^2 + 12x - 4 \] Combine like terms: \[ = 2x^3 - 10x^2 + 14x - 4 \] So, summarizing the expanded and simplified results: 1) \( 2x^3 + 8x^2 + 14x + 12 \) 2) \( x^3 - 3x^2 + 5x - 3 \) 3) \( 6x^3 + 10xy^2 + y^3 \) 4) \( 2x^3 - 10x^2 + 14x - 4 \)