Pregunta

Determine the point of intersection for the system of equations: \( y = 3x - 4 \) and \( y = -2x + 8 \)

Ask by Lindsey Harris. in the Philippines
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The lines intersect at the point \(\left( \frac{12}{5}, \frac{16}{5} \right)\) or \((2.4, 3.2)\).

Solución

To find the point of intersection for the system of equations: 1. \( y = 3x - 4 \) 2. \( y = -2x + 8 \) we need to find the values of \( x \) and \( y \) that satisfy both equations simultaneously. ### Step 1: Set the Equations Equal to Each Other Since both equations are equal to \( y \), we can set them equal to each other: \[ 3x - 4 = -2x + 8 \] ### Step 2: Solve for \( x \) First, let's get all the \( x \)-terms on one side and the constant terms on the other side. 1. **Add \( 2x \) to both sides:** \[ 3x + 2x - 4 = 8 \] \[ 5x - 4 = 8 \] 2. **Add \( 4 \) to both sides:** \[ 5x = 12 \] 3. **Divide both sides by \( 5 \):** \[ x = \frac{12}{5} \quad \text{or} \quad x = 2.4 \] ### Step 3: Solve for \( y \) Now that we have the value of \( x \), we can substitute it back into either of the original equations to find \( y \). Let's use the first equation: \[ y = 3x - 4 \] Substitute \( x = \frac{12}{5} \): \[ y = 3\left(\frac{12}{5}\right) - 4 \] \[ y = \frac{36}{5} - \frac{20}{5} \] \[ y = \frac{16}{5} \quad \text{or} \quad y = 3.2 \] ### Step 4: Write the Point of Intersection The point where the two lines intersect is: \[ \left( \frac{12}{5}, \frac{16}{5} \right) \quad \text{or} \quad (2.4, 3.2) \] ### Conclusion The system of equations intersects at the point **\(\left( \frac{12}{5}, \frac{16}{5} \right)\)**, which is equivalent to **\((2.4, 3.2)\)**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the point of intersection, we need to set the two equations equal to each other since they both equal \(y\). Thus, we have: \[ 3x - 4 = -2x + 8 \] Now, let's solve for \(x\): 1. Add \(2x\) to both sides: \[ 3x + 2x - 4 = 8 \] \[ 5x - 4 = 8 \] 2. Next, add \(4\) to both sides: \[ 5x = 12 \] 3. Finally, divide by \(5\): \[ x = \frac{12}{5} = 2.4 \] Now that we have the \(x\) value, substitute \(x = 2.4\) back into either original equation to find \(y\). Using the first equation: \[ y = 3(2.4) - 4 \] \[ y = 7.2 - 4 \] \[ y = 3.2 \] Thus, the point of intersection is \(\left( \frac{12}{5}, \frac{16}{5} \right)\) or (2.4, 3.2). So, the point of intersection for the given system of equations is \((2.4, 3.2)\).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad