Solve the inequality for \( v \). \[ v+\frac{7}{8}>\frac{1}{2} \] Simplify your answer as much as possible. \( \square \) \( \square<\square \quad \square>\square \quad \square \leq \square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the inequality \( v+\frac{7}{8}>\frac{1}{2} \), we first subtract \( \frac{7}{8} \) from both sides. This gives us: \[ v > \frac{1}{2} - \frac{7}{8} \] Next, we need a common denominator to simplify the right side. The common denominator of \( 2 \) and \( 8 \) is \( 8 \). We can rewrite \( \frac{1}{2} \) as \( \frac{4}{8} \): \[ v > \frac{4}{8} - \frac{7}{8} \] \[ v > \frac{4 - 7}{8} \] \[ v > \frac{-3}{8} \] So the solution to the inequality is: \( v > -\frac{3}{8} \) In terms of the output format: \( \square \) \( -\frac{3}{8} < v \quad v > -\frac{3}{8} \)