Pregunta
upstudy study bank question image url

Brandon is going to invest in an account paying an interest rate of \( 4.6 \% \) compounded annually. How much would Brandon need to invest, to the nearest ten dollars, for the value of the account to reach \( \$ 69,000 \) in 8 years?

Ask by Gibson Bradley. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Brandon needs to invest approximately $48,150 to reach $69,000 in 8 years with a 4.6% annual interest rate compounded annually.

Solución

To find the initial investment needed for the account to reach a value of $69,000 in 8 years with an annual interest rate of 4.6% compounded annually, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the future value of the investment, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate, - \( n \) is the number of years. Given: - \( A = \$69,000 \), - \( r = 4.6\% \), - \( n = 8 \) years. We need to solve for \( P \) to find the initial investment needed. Solve the equation by following steps: - step0: Solve for \(P\): \(69000=P\left(1+\frac{4.6}{100}\right)^{8}\) - step1: Simplify: \(69000=\frac{523^{8}}{500^{8}}\times P\) - step2: Swap the sides: \(\frac{523^{8}}{500^{8}}\times P=69000\) - step3: Rewrite the expression: \(\frac{523^{8}P}{500^{8}}=69000\) - step4: Cross multiply: \(523^{8}P=500^{8}\times 69000\) - step5: Simplify the equation: \(523^{8}P=69000\times 500^{8}\) - step6: Divide both sides: \(\frac{523^{8}P}{523^{8}}=\frac{69000\times 500^{8}}{523^{8}}\) - step7: Divide the numbers: \(P=\frac{69000\times 500^{8}}{523^{8}}\) The initial investment needed for the account to reach a value of $69,000 in 8 years with an annual interest rate of 4.6% compounded annually is \( P = \frac{69000 \times 500^8}{523^8} \). To find the value of \( P \) to the nearest ten dollars, we can calculate it. Calculate the value by following steps: - step0: Calculate: \(\frac{69000\times 500^{8}}{523^{8}}\) Brandon would need to invest approximately $48,149.92 to reach a value of $69,000 in 8 years with an annual interest rate of 4.6% compounded annually.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much Brandon needs to invest today (the present value), we can use the formula for compound interest: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed. Here, we know \( A = 69,000 \), \( r = 0.046 \), and \( n = 8 \). We need to rearrange the formula to solve for \( P \): \[ P = \frac{A}{(1 + r)^n} \] Plugging in the values: \[ P = \frac{69,000}{(1 + 0.046)^8} \] Calculating \( (1 + 0.046)^8 \): \[ (1.046)^8 \approx 1.432364654 \] Now, substitute this back into the equation for \( P \): \[ P = \frac{69,000}{1.432364654} \approx 48,207.43 \] Rounding to the nearest ten dollars, Brandon would need to invest approximately \( \text{ \$48,210} \). So, the answer is that Brandon needs to invest around \( \$48,210 \) to achieve his goal.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad