Pregunta
upstudy study bank question image url

16 \( \begin{array}{l}\frac{3}{5} \text { of the pupils in Primary } 6 A \text { and } \frac{1}{2} \text { of the pupils in Primary } 6 B \text { are girls. } \\ \text { Both classes have the same number of girls. Primary } 6 B \text { has } 6 \text { move boys } \\ \text { than Primary } 6 A \text {. } \\ \text { a) How many pupils are there in Primary } 6 B \text { ? } \\ \text { b) } \frac{1}{3} \text { of the girls and } \frac{2}{5} \text { of the boys in the two classes wear spectacles. } \\ \text { How many pupils in the two classes wear spectacles altogether? }\end{array} \)

Ask by Cox Spencer. in the United Kingdom
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Primary 6 B has 36 pupils.** **A total of 24 pupils wear spectacles in both classes.**

Solución

Let's solve the problem step by step. ### **Given:** 1. **Primary 6 A:** - \( \frac{3}{5} \) of the pupils are girls. 2. **Primary 6 B:** - \( \frac{1}{2} \) of the pupils are girls. 3. Both classes have the **same number of girls**. 4. **Primary 6 B** has **6 more boys** than **Primary 6 A**. ### **Let’s Define Variables:** - Let \( G \) be the number of girls in each class. - Let \( A \) be the total number of pupils in Primary 6 A. - Let \( B \) be the total number of pupils in Primary 6 B. ### **Using the Information:** 1. **For Primary 6 A:** \[ \frac{3}{5}A = G \quad \Rightarrow \quad \text{Number of boys in 6 A} = A - G = A - \frac{3}{5}A = \frac{2}{5}A \] 2. **For Primary 6 B:** \[ \frac{1}{2}B = G \quad \Rightarrow \quad \text{Number of boys in 6 B} = B - G = B - \frac{1}{2}B = \frac{1}{2}B \] 3. **Equal Number of Girls:** \[ \frac{3}{5}A = \frac{1}{2}B \quad \Rightarrow \quad B = \frac{6}{5}A \] 4. **Difference in Number of Boys:** \[ \frac{1}{2}B - \frac{2}{5}A = 6 \] Substitute \( B = \frac{6}{5}A \): \[ \frac{1}{2} \times \frac{6}{5}A - \frac{2}{5}A = 6 \quad \Rightarrow \quad \frac{3}{5}A - \frac{2}{5}A = 6 \quad \Rightarrow \quad \frac{1}{5}A = 6 \quad \Rightarrow \quad A = 30 \] 5. **Total Pupils in Primary 6 B:** \[ B = \frac{6}{5} \times 30 = 36 \] ### **Answer to Part (a):** **Primary 6 B** has **36 pupils**. ### **For Part (b):** 1. **Total Girls in Both Classes:** \[ G_{\text{total}} = 18 + 18 = 36 \quad \left(\text{since } \frac{3}{5} \times 30 = 18 \text{ and } \frac{1}{2} \times 36 = 18\right) \] 2. **Total Boys in Both Classes:** \[ B_{\text{total}} = 12 + 18 = 30 \quad \left(\text{since } \frac{2}{5} \times 30 = 12 \text{ and } \frac{1}{2} \times 36 = 18\right) \] 3. **Pupils Wearing Spectacles:** - \( \frac{1}{3} \) of the girls: \[ \frac{1}{3} \times 36 = 12 \] - \( \frac{2}{5} \) of the boys: \[ \frac{2}{5} \times 30 = 12 \] - **Total pupils wearing spectacles:** \[ 12 + 12 = 24 \] ### **Answer to Part (b):** A total of **24 pupils** in the two classes wear spectacles. ## **Final Answers:** a) **36 pupils** in Primary 6 B. b) **24 pupils** wear spectacles altogether.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the problem, let's let \( x \) be the number of pupils in Primary 6 A. Since \(\frac{3}{5}\) of these pupils are girls, the number of girls in Primary 6 A is \(\frac{3}{5}x\). Thus, the number of boys in Primary 6 A would be \(x - \frac{3}{5}x = \frac{2}{5}x\). Now, let \( y \) be the number of pupils in Primary 6 B. According to the problem, \(\frac{1}{2}\) of these pupils are girls, so the number of girls in Primary 6 B is \(\frac{1}{2}y\). The number of boys in Primary 6 B is therefore \(y - \frac{1}{2}y = \frac{1}{2}y\). We know that both classes have the same number of girls: \[ \frac{3}{5}x = \frac{1}{2}y \] It is also stated that Primary 6 B has 6 more boys than Primary 6 A: \[ \frac{1}{2}y = \frac{2}{5}x + 6 \] Now we can solve these equations. 1. **From the first equation**: \[ \frac{3}{5}x = \frac{1}{2}y \implies y = \frac{3}{5}x \cdot 2 = \frac{6}{5}x \] 2. **Substituting \(y\) in the second equation**: \[ \frac{1}{2} \left( \frac{6}{5}x \right) = \frac{2}{5}x + 6 \] This simplifies to: \[ \frac{3}{5}x = \frac{2}{5}x + 6 \] Now, subtracting \(\frac{2}{5}x\) from both sides: \[ \frac{3}{5}x - \frac{2}{5}x = 6 \implies \frac{1}{5}x = 6 \implies x = 30 \] Now, substituting \(x\) back to find \(y\): \[ y = \frac{6}{5}(30) = 36 \] So there are **36 pupils in Primary 6 B**. For part b, let's find how many pupils wear spectacles in each class. In Primary 6 A: - Total pupils: \(30\) - Girls: \(\frac{3}{5} \times 30 = 18\) - Boys: \(30 - 18 = 12\) - Spectacles wearers: Girls ( \(\frac{1}{3} \times 18 = 6\) ), Boys ( \(\frac{2}{5} \times 12 = 4.8 \approx 4\) rounded down, since they can't be a fraction); - Total Spectacles in A = \(6 + 4 = 10\) In Primary 6 B: - Total pupils: \(36\) - Girls: \(\frac{1}{2} \times 36 = 18\) - Boys: \(36 - 18 = 18\) - Spectacles wearers: Girls (\(\frac{1}{3} \times 18 = 6\)), Boys (\(\frac{2}{5} \times 18 = 7.2 \approx 7\) rounded down); - Total Spectacles in B = \(6 + 7 = 13\) Now, adding both classes: Total spectacles wearers = \(10 + 13 = 23\). So, the answers are: a) There are 36 pupils in Primary 6 B. b) Altogether, 23 pupils in the two classes wear spectacles.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad