Pregunta
upstudy study bank question image url

You would like to have \( \$ 3,000 \) in 3 years for a special vacation following graduation by making deposits at the end of every six months in an annuity that pays \( 4 \% \) compounded semiannually. a. Determine how much you should deposit at the end of every six months. b. How much of the \( \$ 3,000 \) comes from deposits and how much comes from interest? a. In order to have \( \$ 3,000 \) in 3 years, you should deposit \( \$ \square \) at the end of every six months. (Do not round until the final answer. Then round up to the nearest dollar.) b. \( \$ \square \) of the \( \$ 3,000 \) comes from your deposits and \( \$ \square \) comes from interest. (Use the answer from part a to find this answer. Round to the nearest dollar as needed.) be

Ask by Edwards Chambers. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a.** You should deposit **\$476** at the end of every six months. **b.** \$2,856 comes from your deposits and \$144 comes from interest.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To solve this problem, we need to use the formula for the future value of an ordinary annuity. The formula is given by: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value of the annuity (which we want to be \( 3000 \)) - \( P \) is the amount deposited at the end of every period (which we're solving for) - \( r \) is the interest rate per period - \( n \) is the total number of periods In this case, since the interest is compounded semiannually, the interest rate \( r \) per period will be \( 0.04/2 = 0.02 \), and the total number of periods \( n \) is \( 3 \times 2 = 6 \). Now, we can substitute these values into the formula: \[ 3000 = P \times \frac{(1 + 0.02)^6 - 1}{0.02} \] Calculating \( (1 + 0.02)^6 \): \[ (1.02)^6 \approx 1.12616 \] Now plug this into the equation: \[ 3000 = P \times \frac{1.12616 - 1}{0.02} = P \times \frac{0.12616}{0.02} \approx P \times 6.308 \] Now solve for \( P \): \[ P \approx \frac{3000}{6.308} \approx 475.47 \] Thus, you would need to deposit approximately \( 475.47 \) at the end of every six months. Rounding up, you should deposit \( \$ 476 \). Now, to find out how much comes from deposits and how much from interest: Total deposits over 6 periods: \[ Total\, Deposits = P \times n = 476 \times 6 = 2856 \] Now subtract from the future value to find the interest earned: \[ Interest = 3000 - 2856 = 144 \] Thus, a. In order to have \( \$ 3,000 \) in 3 years, you should deposit \( \$ 476 \) at the end of every six months. b. \( \$ 2,856 \) of the \( \$ 3,000 \) comes from your deposits and \( \$ 144 \) comes from interest.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad