3. [-/3 Points \( ] \) DETAILS MY NOTES HARMATHAP12 2.3.009.EP. Suppose that in a monopoly market, the demand function for a product is \( p=130-0.50 x \) and the revenue function is \( R=p x \), where \( x \) is the number of units sold and \( p \) is the price per unit (in dollars). Form the revenue function \( R(x) \). Find the number of units that must be soldito maximize revenue. \( x= \) Find the price of the product (in dollars) that will maximize revenue. \( \$ \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To form the revenue function \( R(x) \), substitute the demand equation \( p = 130 - 0.50x \) into the revenue formula \( R = p \cdot x \). This gives us \( R(x) = (130 - 0.50x) \cdot x = 130x - 0.50x^2 \). To maximize revenue, take the derivative \( R'(x) = 130 - x \) and set it to zero: \( 130 - x = 0 \) which gives \( x = 130 \). To find the price that maximizes revenue, substitute \( x = 130 \) back into the demand function: \( p = 130 - 0.50(130) = 130 - 65 = 65 \). Therefore, the price that maximizes revenue is \( \$65 \).