Pregunta
upstudy study bank question image url

6:34PM Thu Jan 23 In Emilio Mejia Felici... AA. 12 Independence and conditional probability If \( A \) and \( B \) are independent events, what is the probability that \( A \) and \( B \) both occur? Simplify any fractions. \( \square \)

Ask by Chandler Norton. in Puerto Rico
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that both \( A \) and \( B \) occur is \( P(A) \times P(B) \).

Solución

If events \( A \) and \( B \) are **independent**, the occurrence of one event does not affect the probability of the other. **Probability of Both \( A \) and \( B \) Occurring:** For independent events, the probability that both \( A \) and \( B \) occur is the **product** of their individual probabilities. Mathematically, this is expressed as: \[ P(A \text{ and } B) = P(A) \times P(B) \] **Simplified Answer:** \[ P(A \cap B) = P(A) \times P(B) \] **Example:** If \( P(A) = \frac{1}{2} \) and \( P(B) = \frac{1}{3} \), then: \[ P(A \cap B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \] So, the probability that both \( A \) and \( B \) occur is \( \frac{1}{6} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When two events \( A \) and \( B \) are independent, the probability of both events occurring is calculated by multiplying their individual probabilities. So, if the probability of event \( A \) occurring is \( P(A) \) and the probability of event \( B \) occurring is \( P(B) \), then the probability of both events occurring is given by \( P(A \cap B) = P(A) \times P(B) \). For instance, if \( P(A) = \frac{1}{4} \) and \( P(B) = \frac{1}{3} \), the combined probability is \( P(A \cap B) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} \). So, the answer you would put in the box is \( \frac{1}{12} \) after simplification. Understanding independent events can be quite fun! In real-world examples, consider flipping a coin and rolling a die. The coin landing heads (event \( A \)) is independent of the die rolling a four (event \( B \)). This illustrates how events can happen without influencing each other, making probability calculations simpler and more intuitive!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad