Pregunta
\( \equiv 1 \quad \equiv 2 \) 3 4 5 6 7 Is the point \( (-12,-14) \) on the circle defined by \( (x+12)^{2}+(y+17)^{2}=9 \) ? Yes No
Ask by Barrett Hilton. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The point \((-12, -14)\) is on the circle.
**Answer:** Yes
Solución
To determine whether the point \((-12, -14)\) lies on the circle defined by the equation \((x + 12)^2 + (y + 17)^2 = 9\), we can substitute the coordinates of the point into the equation and see if it holds true.
1. **Substitute \(x = -12\) and \(y = -14\) into the equation:**
\[
(x + 12)^2 + (y + 17)^2 = (-12 + 12)^2 + (-14 + 17)^2
\]
2. **Simplify the expressions inside the parentheses:**
\[
(0)^2 + (3)^2 = 0 + 9 = 9
\]
3. **Compare the result with the right side of the equation:**
\[
9 = 9
\]
Since both sides of the equation are equal, the point \((-12, -14)\) satisfies the equation of the circle.
**Answer:** Yes
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To determine if the point \((-12,-14)\) lies on the circle defined by \((x+12)^{2}+(y+17)^{2}=9\), we can substitute the coordinates of the point into the equation. First, calculate \((-12+12)^2 + (-14+17)^2\): - \((-12 + 12)^2 = 0^2 = 0\) - \((-14 + 17)^2 = 3^2 = 9\) Adding those together gives \(0 + 9 = 9\). Since \(9\) equals the radius squared (which is also \(9\)), the point \((-12,-14)\) indeed lies on the circle. **Answer: Yes.**
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium