Pregunta
Solve for \( x \). \[ 8(x-2)=z \] \( x=\square \)
Ask by Patel Nunez. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = \frac{z + 16}{8} \)
Solución
Solve the equation \( 8(x-2)=z \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(8\left(x-2\right)=z\)
- step1: Divide both sides:
\(\frac{8\left(x-2\right)}{8}=\frac{z}{8}\)
- step2: Divide the numbers:
\(x-2=\frac{z}{8}\)
- step3: Move the constant to the right side:
\(x=\frac{z}{8}+2\)
- step4: Add the terms:
\(x=\frac{z+16}{8}\)
The solution to the equation \(8(x-2)=z\) is \(x=\frac{z+16}{8}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve for \( x \), we start with the equation: \[ 8(x-2) = z \] First, divide each side of the equation by 8: \[ x - 2 = \frac{z}{8} \] Next, add 2 to both sides to isolate \( x \): \[ x = \frac{z}{8} + 2 \] So, the solution is: \( x = \frac{z}{8} + 2 \) Now, you can plug in any value for \( z \) to find the corresponding value of \( x \)!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium