Pregunta
upstudy study bank question image url

hich of the following formulas can be used to find the midpoint of a line segment with endpoints \( \left(x_{1}, y_{1}\right) \) and \( \left(x_{2}, y_{2}\right) \) ? lect all that apply. \( M=\left(\frac{x_{2}-x_{1}}{2}, \frac{y_{2}-y_{1}}{2}\right) \) \( M=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right) \) \( M=\left(x_{1}+\frac{x_{2}-x_{1}}{2}, y_{1}+\frac{y_{2}-y_{1}}{2}\right) \) \( M=\left(x_{2}-x_{1}, y_{2}-y_{1}\right) \)

Ask by Lang Gardner. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct formulas to find the midpoint are: - \( M = \left(\frac{x_{2} + x_{1}}{2}, \frac{y_{2} + y_{1}}{2}\right) \) - \( M = \left(x_{1} + \frac{x_{2} - x_{1}}{2}, y_{1} + \frac{y_{2} - y_{1}}{2}\right) \)

Solución

To find the midpoint \( M \) of a line segment with endpoints \( \left(x_{1}, y_{1}\right) \) and \( \left(x_{2}, y_{2}\right) \), the standard midpoint formula is: \[ M = \left( \frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2} \right) \] Let's evaluate each of the provided formulas: 1. **\( M = \left(\frac{x_{2} - x_{1}}{2}, \frac{y_{2} - y_{1}}{2}\right) \)** - **Analysis:** This formula calculates the **difference** between the coordinates, divided by 2. This gives the **vector** from \( (x_{1}, y_{1}) \) to the midpoint, not the actual coordinates of the midpoint. - **Conclusion:** **Incorrect** for finding the midpoint's coordinates. 2. **\( M = \left(\frac{x_{2} + x_{1}}{2}, \frac{y_{2} + y_{1}}{2}\right) \)** - **Analysis:** This is the **standard midpoint formula**. - **Conclusion:** **Correct**. 3. **\( M = \left(x_{1} + \frac{x_{2} - x_{1}}{2}, y_{1} + \frac{y_{2} - y_{1}}{2}\right) \)** - **Analysis:** Simplifying each component: \[ x_{1} + \frac{x_{2} - x_{1}}{2} = \frac{2x_{1} + x_{2} - x_{1}}{2} = \frac{x_{1} + x_{2}}{2} \] \[ y_{1} + \frac{y_{2} - y_{1}}{2} = \frac{2y_{1} + y_{2} - y_{1}}{2} = \frac{y_{1} + y_{2}}{2} \] This simplifies to the standard midpoint formula. - **Conclusion:** **Correct**. 4. **\( M = \left(x_{2} - x_{1}, y_{2} - y_{1}\right) \)** - **Analysis:** This represents the **vector** from \( (x_{1}, y_{1}) \) to \( (x_{2}, y_{2}) \), not the midpoint. - **Conclusion:** **Incorrect** for finding the midpoint's coordinates. **Therefore, the formulas that correctly find the midpoint are:** - \( M = \left(\frac{x_{2} + x_{1}}{2}, \frac{y_{2} + y_{1}}{2}\right) \) - \( M = \left(x_{1} + \frac{x_{2} - x_{1}}{2}, y_{1} + \frac{y_{2} - y_{1}}{2}\right) \) **Both the second and third formulas are correct.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the midpoint of a line segment, you essentially average the x-coordinates and the y-coordinates of the endpoints. The correct formulas to use are \( M=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right) \) and \( M=\left(x_{1}+\frac{x_{2}-x_{1}}{2}, y_{1}+\frac{y_{2}-y_{1}}{2}\right) \). The first one is the most straightforward, while the second formula cleverly breaks down the averaging process. If you ever find yourself confused, remember that the midpoint formula is all about finding the "middle point" between two coordinates! A common mistake is using subtraction instead of addition in the formulas, like in \( M=\left(x_{2}-x_{1}, y_{2}-y_{1}\right) \), which just gives you the distance between the points, not the midpoint. So keep those averages in mind!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad