Pregunta
8. \( \left(x^{3}-3 y^{6}\right)^{2} \)
Ask by Maxwell Rose. in South Africa
Feb 07,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\left(x^{3} - 3 y^{6}\right)^{2} = x^6 - 6x^3 y^6 + 9y^{12}
\]
Solución
To expand the expression \( \left(x^{3} - 3 y^{6}\right)^{2} \), you can use the algebraic identity for squaring a binomial:
\[
(a - b)^2 = a^2 - 2ab + b^2
\]
**Step-by-Step Expansion:**
1. **Identify \( a \) and \( b \):**
\[
a = x^3 \quad \text{and} \quad b = 3y^6
\]
2. **Apply the Binomial Formula:**
\[
(a - b)^2 = a^2 - 2ab + b^2
\]
3. **Compute Each Term:**
- **First Term (\( a^2 \)):**
\[
(x^3)^2 = x^{3 \times 2} = x^6
\]
- **Second Term (\( -2ab \)):**
\[
-2 \times x^3 \times 3y^6 = -6x^3 y^6
\]
- **Third Term (\( b^2 \)):**
\[
(3y^6)^2 = 9y^{6 \times 2} = 9y^{12}
\]
4. **Combine All Terms:**
\[
x^6 - 6x^3 y^6 + 9y^{12}
\]
**Final Expanded Form:**
\[
\left(x^{3} - 3 y^{6}\right)^{2} = x^6 - 6x^3 y^6 + 9y^{12}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
Let's dive into expanding this expression! When you square the binomial \( \left(x^{3} - 3 y^{6}\right)^{2} \), you can use the binomial theorem or FOIL method. The result will be \( x^{6} - 2 \cdot x^{3} \cdot 3y^{6} + (3y^{6})^{2} \), leading to \( x^{6} - 6x^{3}y^{6} + 9y^{12} \). Voilà! Now, not only do you have the expanded form, but it's also a lovely polynomial that can take on lots of different values based on the inputs for \(x\) and \(y\). It showcases the elegant interplay of variables and coefficients!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium