Pregunta
upstudy study bank question image url

4) \( \frac{a}{1-r}-\frac{a\left(r^{n}-1\right)}{r-1}<1 \)

Ask by Powell Delgado. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the inequality \( \frac{a}{1 - r} - \frac{a(r^{n} - 1)}{r - 1} < 1 \), follow these steps: 1. **Simplify the Expression:** \[ \frac{a}{1 - r} + \frac{a(r^{n} - 1)}{1 - r} < 1 \] \[ \frac{a \cdot r^{n}}{1 - r} < 1 \] 2. **Solve for \( a \):** \[ a < \frac{1 - r}{r^{n}} \] 3. **Consider the Value of \( r \):** - **For \( 0 < r < 1 \):** \( a < \frac{1 - r}{r^{n}} \) - **For \( r > 1 \) and \( a > 0 \):** The inequality always holds. - **For \( r = 1 \) or \( r < 0 \):** The inequality is undefined or requires further analysis. **Conclusion:** The value of \( a \) must be less than \( \frac{1 - r}{r^{n}} \) when \( 0 < r < 1 \). For \( r > 1 \) and \( a > 0 \), the inequality is always satisfied.

Solución

Let's solve the inequality: \[ \frac{a}{1 - r} - \frac{a(r^{n} - 1)}{r - 1} < 1 \] ### Step 1: Simplify the Expression First, observe that \( r - 1 = - (1 - r) \). This allows us to rewrite the second term: \[ \frac{a(r^{n} - 1)}{r - 1} = \frac{a(r^{n} - 1)}{-(1 - r)} = -\frac{a(r^{n} - 1)}{1 - r} \] Now, substitute this back into the original inequality: \[ \frac{a}{1 - r} - \left(-\frac{a(r^{n} - 1)}{1 - r}\right) < 1 \] \[ \frac{a}{1 - r} + \frac{a(r^{n} - 1)}{1 - r} < 1 \] Combine the fractions: \[ \frac{a + a(r^{n} - 1)}{1 - r} < 1 \] \[ \frac{a \cdot r^{n}}{1 - r} < 1 \] ### Step 2: Solve for \( a \) The simplified inequality is: \[ \frac{a \cdot r^{n}}{1 - r} < 1 \] Let's solve for \( a \): \[ a \cdot r^{n} < 1 - r \] \[ a < \frac{1 - r}{r^{n}} \] ### Step 3: Consider the Sign of \( 1 - r \) The inequality depends on the value of \( r \). We'll analyze two primary cases: 1. **When \( 0 < r < 1 \):** - \( 1 - r > 0 \) and \( r^{n} > 0 \). - The inequality simplifies to: \[ a < \frac{1 - r}{r^{n}} \] - **Conclusion:** For the inequality to hold, \( a \) must be **less than** \( \frac{1 - r}{r^{n}} \). 2. **When \( r > 1 \):** - \( 1 - r < 0 \) and \( r^{n} > 0 \). - Multiplying both sides by \( 1 - r \) (which is negative) reverses the inequality: \[ a \cdot r^{n} > 1 - r \] - Since \( 1 - r < 0 \) and \( r^{n} > 0 \), \( a \) only needs to be greater than a negative number, which is always true if \( a > 0 \). - **Conclusion:** For \( r > 1 \), **any positive \( a \)** satisfies the inequality. 3. **When \( r = 1 \):** - The original expression is undefined due to division by zero. 4. **When \( r < 0 \):** - Additional considerations are needed based on the parity of \( n \) and the specific context, but generally, the above conclusions hold for \( |r| > 0 \). ### Final Summary - **If \( 0 < r < 1 \):** \[ a < \frac{1 - r}{r^{n}} \] - **If \( r > 1 \) and \( a > 0 \):** The inequality is always satisfied. - **If \( r = 1 \):** The inequality is undefined. - **If \( r < 0 \):** Further analysis is required based on the specific values of \( r \) and \( n \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \( \frac{a}{1-r}-\frac{a\left(r^{n}-1\right)}{r-1}<1 \), we first simplify the expression. Start by finding a common denominator for the left-hand side. The common denominator between \(1-r\) and \(r-1\) can be expressed, leading to a single fraction. After performing operations, isolate \(r\) on one side. This could involve manipulating the terms carefully and factoring when needed. Be mindful of the value constraints for \(r\). It's vital to remember that if \(r\) is approaching 1, the terms behave differently due to potential division by zero errors. When dealing with sequences and series, check the limits and the behavior of \(a\) and \(n\) as they might impact the overall inequality and how \(r\) trends with those values. Always ensure proper checks across all ranges!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad