Responder
To solve the inequality \( \frac{a}{1 - r} - \frac{a(r^{n} - 1)}{r - 1} < 1 \), follow these steps:
1. **Simplify the Expression:**
\[
\frac{a}{1 - r} + \frac{a(r^{n} - 1)}{1 - r} < 1
\]
\[
\frac{a \cdot r^{n}}{1 - r} < 1
\]
2. **Solve for \( a \):**
\[
a < \frac{1 - r}{r^{n}}
\]
3. **Consider the Value of \( r \):**
- **For \( 0 < r < 1 \):** \( a < \frac{1 - r}{r^{n}} \)
- **For \( r > 1 \) and \( a > 0 \):** The inequality always holds.
- **For \( r = 1 \) or \( r < 0 \):** The inequality is undefined or requires further analysis.
**Conclusion:** The value of \( a \) must be less than \( \frac{1 - r}{r^{n}} \) when \( 0 < r < 1 \). For \( r > 1 \) and \( a > 0 \), the inequality is always satisfied.
Solución
Let's solve the inequality:
\[
\frac{a}{1 - r} - \frac{a(r^{n} - 1)}{r - 1} < 1
\]
### Step 1: Simplify the Expression
First, observe that \( r - 1 = - (1 - r) \). This allows us to rewrite the second term:
\[
\frac{a(r^{n} - 1)}{r - 1} = \frac{a(r^{n} - 1)}{-(1 - r)} = -\frac{a(r^{n} - 1)}{1 - r}
\]
Now, substitute this back into the original inequality:
\[
\frac{a}{1 - r} - \left(-\frac{a(r^{n} - 1)}{1 - r}\right) < 1
\]
\[
\frac{a}{1 - r} + \frac{a(r^{n} - 1)}{1 - r} < 1
\]
Combine the fractions:
\[
\frac{a + a(r^{n} - 1)}{1 - r} < 1
\]
\[
\frac{a \cdot r^{n}}{1 - r} < 1
\]
### Step 2: Solve for \( a \)
The simplified inequality is:
\[
\frac{a \cdot r^{n}}{1 - r} < 1
\]
Let's solve for \( a \):
\[
a \cdot r^{n} < 1 - r
\]
\[
a < \frac{1 - r}{r^{n}}
\]
### Step 3: Consider the Sign of \( 1 - r \)
The inequality depends on the value of \( r \). We'll analyze two primary cases:
1. **When \( 0 < r < 1 \):**
- \( 1 - r > 0 \) and \( r^{n} > 0 \).
- The inequality simplifies to:
\[
a < \frac{1 - r}{r^{n}}
\]
- **Conclusion:** For the inequality to hold, \( a \) must be **less than** \( \frac{1 - r}{r^{n}} \).
2. **When \( r > 1 \):**
- \( 1 - r < 0 \) and \( r^{n} > 0 \).
- Multiplying both sides by \( 1 - r \) (which is negative) reverses the inequality:
\[
a \cdot r^{n} > 1 - r
\]
- Since \( 1 - r < 0 \) and \( r^{n} > 0 \), \( a \) only needs to be greater than a negative number, which is always true if \( a > 0 \).
- **Conclusion:** For \( r > 1 \), **any positive \( a \)** satisfies the inequality.
3. **When \( r = 1 \):**
- The original expression is undefined due to division by zero.
4. **When \( r < 0 \):**
- Additional considerations are needed based on the parity of \( n \) and the specific context, but generally, the above conclusions hold for \( |r| > 0 \).
### Final Summary
- **If \( 0 < r < 1 \):**
\[
a < \frac{1 - r}{r^{n}}
\]
- **If \( r > 1 \) and \( a > 0 \):**
The inequality is always satisfied.
- **If \( r = 1 \):**
The inequality is undefined.
- **If \( r < 0 \):**
Further analysis is required based on the specific values of \( r \) and \( n \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución