Pregunta

Part (f) A school with an enrollment of 9000 would be how many standard deviations away from the mean? (Round your answer to two decimal places.)

Ask by Edwards Love. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find out how many standard deviations a school with 9,000 students is from the mean enrollment, you need the mean (\( \mu \)) and the standard deviation (\( \sigma \)) of the dataset. Use the z-score formula: \[ z = \frac{9,000 - \mu}{\sigma} \] After calculating, round the result to two decimal places.

Solución

To determine how many standard deviations a school with an enrollment of **9,000** is away from the mean, we need two key pieces of information: 1. **Mean Enrollment (μ):** The average number of students enrolled across all schools in the dataset. 2. **Standard Deviation (σ):** A measure of the variability or dispersion of the enrollments around the mean. The formula to calculate the **z-score**, which represents the number of standard deviations a particular value is from the mean, is: \[ z = \frac{X - \mu}{\sigma} \] Where: - \( X \) = The value in question (9,000 students) - \( \mu \) = Mean enrollment - \( \sigma \) = Standard deviation of enrollments **Steps to Calculate:** 1. **Identify the Mean (μ):** Determine the average enrollment across all relevant schools. 2. **Determine the Standard Deviation (σ):** Calculate or obtain the standard deviation of enrollments. 3. **Apply the Z-Score Formula:** Plug the values into the formula to find the z-score. **Example Calculation:** *Assume the following (for demonstration purposes):* - Mean enrollment (\( \mu \)) = 7,500 students - Standard deviation (\( \sigma \)) = 500 students \[ z = \frac{9,000 - 7,500}{500} = \frac{1,500}{500} = 3.00 \] In this example, a school with **9,000** students is **3.00 standard deviations** above the mean enrollment. **Next Steps:** Please provide the **mean enrollment** and the **standard deviation** for the dataset you’re referencing. With those values, I can help you calculate the exact number of standard deviations the 9,000 enrollment figure is from the mean.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how many standard deviations away from the mean an enrollment of 9000 is, you need to find the mean and standard deviation of the specific population or distribution in question. Once you have that information, you can use the formula: \[ z = \frac{(X - \mu)}{\sigma} \] where \( z \) is the number of standard deviations from the mean, \( X \) is the value in question (9000), \( \mu \) is the mean, and \( \sigma \) is the standard deviation. If you have those parameters (mean and standard deviation), plug them into the formula to calculate \( z \) and round it to two decimal places for your answer.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad