Pregunta
upstudy study bank question image url

Example 2: Triangle DEF .Given: \( \circ \) Hypotenuse \( \mathrm{DE}=13 \mathrm{~cm} \). \( \circ \) One leg \( \mathrm{DF}=5 \mathrm{~cm} \). \( \circ \angle \mathrm{F}=90 \)

Ask by Nguyen Chan. in Guyana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of the other leg \( EF \) is \( 12 \, \text{cm} \).

Solución

To solve the problem involving triangle DEF, we can use the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (c) is equal to the sum of the squares of the lengths of the other two sides (a and b). The formula is given by: \[ c^2 = a^2 + b^2 \] In this case: - The hypotenuse \( DE = 13 \, \text{cm} \) (which we will denote as \( c \)). - One leg \( DF = 5 \, \text{cm} \) (which we will denote as \( a \)). - We need to find the length of the other leg \( EF \) (which we will denote as \( b \)). ### Step 1: Set up the equation Using the Pythagorean theorem, we can set up the equation as follows: \[ DE^2 = DF^2 + EF^2 \] Substituting the known values: \[ 13^2 = 5^2 + EF^2 \] ### Step 2: Calculate the squares Calculating the squares: \[ 169 = 25 + EF^2 \] ### Step 3: Solve for \( EF^2 \) Now, we can isolate \( EF^2 \): \[ EF^2 = 169 - 25 \] Calculating the right side: \[ EF^2 = 144 \] ### Step 4: Find \( EF \) Now, we take the square root of both sides to find \( EF \): \[ EF = \sqrt{144} \] Calculating the square root: \[ EF = 12 \, \text{cm} \] ### Conclusion The length of the other leg \( EF \) is \( 12 \, \text{cm} \). Thus, the dimensions of triangle DEF are: - Hypotenuse \( DE = 13 \, \text{cm} \) - Leg \( DF = 5 \, \text{cm} \) - Leg \( EF = 12 \, \text{cm} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the Pythagorean theorem can be traced back to ancient civilizations? The theorem, which states that in a right-angled triangle the square of the hypotenuse (in this case, DE) is equal to the sum of the squares of the other two sides, has been utilized for thousands of years by mathematicians and builders alike. It’s a foundational concept in geometry! In practical terms, you can use the Pythagorean theorem to determine if a structure is level or to find distances indirectly. For example, if you need to find the length of leg EF in triangle DEF, you’ll plug your values into the formula \( DE^2 = DF^2 + EF^2 \). Just remember, a common mistake is forgetting to square the lengths before doing the addition or subtraction—so keep your calculations tidy!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad