Pregunta
(ii). The fith term in the expansion of
is :
(a)
(b)
©
(d) None
(iv). The middle term/s in the expansion of
is :
(a) 504
(b) 252
©
(d) None
(v). The value of
, (where
):
(a) 1
(b)
© -1
(d) None
(vi). The value of
:
(a) 1
(b) 2
©, 0
(d) None
(a)
(b)
©
(d) None
(iv). The middle term/s in the expansion of
(a) 504
(b) 252
©
(d) None
(v). The value of
(a) 1
(b)
© -1
(d) None
(vi). The value of
(a) 1
(b) 2
©, 0
(d) None
Ask by Black Salazar. in India
Jan 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(ii) (a)
(iv) (b)
(v) ©
(vi) ©
(iv) (b)
(v) ©
(vi) ©
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
The fifth term in the expansion of
can be found using the binomial theorem, which states that the
term is given by
. Here, with
,
, and
, the fifth term
is
, so the correct answer is (a)
.
For the middle term in the expansion of
, we need to recognize that this binomial expands to
terms when
is even. In this case, since
, the middle terms are
and
, both of which can be computed. Specifically, using
, we get
and hence, (b) 252 is the answer.
The final values can also be calculated based on
. Utilizing the property
, we find
, so the answer is © -1. For
, where
is a cube root of unity, it satisfies
, hence
. Therefore,
, leaving us with © 0.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium