Pregunta
upstudy study bank question image url

(ii). The fith term in the expansion of \( \left(1-\frac{1}{x}\right)^{10} \) is : (a) \( \frac{210}{x^{4}} \) (b) \( \frac{x^{4}}{210} \) (c) \( \frac{1}{x^{4}} \) (d) None \( \square \times \square \) (iv). The middle term/s in the expansion of \( \left(x+\frac{1}{x}\right)^{10} \) is : (a) 504 (b) 252 (c) \( \frac{1}{x^{4}} \) (d) None (v). The value of \( i^{6} \), (where \( i=\sqrt{-1} \) ): (a) 1 (b) \( i \) (c) -1 (d) None (vi). The value of \( i^{6}+\omega^{6} \) : (a) 1 (b) 2 (c), 0 (d) None

Ask by Black Salazar. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(ii)** (a) **(iv)** (b) **(v)** (c) **(vi)** (c)

Solución

Let's address each part of the question step-by-step. --- ### (ii). The fifth term in the expansion of \( \left(1-\frac{1}{x}\right)^{10} \) **Solution:** The general term in the binomial expansion of \( (a + b)^n \) is given by: \[ T_{k+1} = C(n, k) \cdot a^{n-k} \cdot b^k \] where \( C(n, k) \) is the binomial coefficient. Here, \( a = 1 \), \( b = -\frac{1}{x} \), and \( n = 10 \). For the **fifth term**, \( k = 4 \): \[ T_5 = C(10, 4) \cdot 1^{10-4} \cdot \left(-\frac{1}{x}\right)^4 = C(10, 4) \cdot \frac{1}{x^4} \] \[ C(10, 4) = 210 \] \[ T_5 = \frac{210}{x^4} \] **Answer:** **(a) \( \frac{210}{x^{4}} \)** --- ### (iv). The middle term/s in the expansion of \( \left(x+\frac{1}{x}\right)^{10} \) **Solution:** For an expansion of \( (a + b)^{n} \), if \( n \) is even, there are two middle terms; if odd, there's one middle term. Here, \( n = 10 \) (even), so there are two middle terms. However, considering the symmetry in \( \left(x + \frac{1}{x}\right)^{10} \), both middle terms will be the same. The general term is: \[ T_{k+1} = C(10, k) \cdot x^{10-k} \cdot \left(\frac{1}{x}\right)^k = C(10, k) \cdot x^{10-2k} \] For the middle term: \[ k = 5 \] \[ T_6 = C(10, 5) \cdot x^{0} = C(10, 5) \] \[ C(10, 5) = 252 \] **Answer:** **(b) 252** --- ### (v). The value of \( i^{6} \), where \( i = \sqrt{-1} \) **Solution:** Powers of \( i \) cycle every 4: \[ i^1 = i \\ i^2 = -1 \\ i^3 = -i \\ i^4 = 1 \\ i^5 = i \\ i^6 = -1 \] **Answer:** **(c) -1** --- ### (vi). The value of \( i^{6} + \omega^{6} \) **Assumption:** Assuming \( \omega \) is a primitive cube root of unity, i.e., \( \omega^3 = 1 \). **Solution:** From part (v): \[ i^6 = -1 \] For \( \omega^6 \): \[ \omega^6 = (\omega^3)^2 = 1^2 = 1 \] Therefore: \[ i^6 + \omega^6 = -1 + 1 = 0 \] **Answer:** **(c) 0** --- ### Summary of Answers - **(ii)** (a) - **(iv)** (b) - **(v)** (c) - **(vi)** (c)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The fifth term in the expansion of \( \left(1-\frac{1}{x}\right)^{10} \) can be found using the binomial theorem, which states that the \( r^{th} \) term is given by \( T_r = \binom{n}{r-1} a^{n-(r-1)} b^{r-1} \). Here, with \( n=10 \), \( a=1 \), and \( b=-\frac{1}{x} \), the fifth term \( T_5 \) is \( \binom{10}{4} (1)^{6} \left(-\frac{1}{x}\right)^{4} = -\frac{210}{x^{4}} \), so the correct answer is (a) \( \frac{210}{x^{4}} \). For the middle term in the expansion of \( \left(x+\frac{1}{x}\right)^{10} \), we need to recognize that this binomial expands to \( 2n \) terms when \( n \) is even. In this case, since \( n=10 \), the middle terms are \( T_5 \) and \( T_6 \), both of which can be computed. Specifically, using \( T_k = \binom{n}{k} a^{n-k} b^{k} \), we get \( T_5 = \binom{10}{5} x^5 \left(\frac{1}{x}\right)^5 = \binom{10}{5} = 252 \) and hence, (b) 252 is the answer. The final values can also be calculated based on \( i^{6} \). Utilizing the property \( i^2 = -1 \), we find \( i^{6} = (i^2)^{3} = (-1)^{3} = -1 \), so the answer is (c) -1. For \( \omega^{6} \), where \( \omega \) is a cube root of unity, it satisfies \( \omega^3 = 1 \), hence \( \omega^{6} = (\omega^3)^2 = 1 \). Therefore, \( i^6 + \omega^6 = -1 + 1 = 0 \), leaving us with (c) 0.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad