Pregunta
Solve for \( x \) \( -x^{3}-2 x^{2}+8 x=0 \) \( x=[?], \square, \square] \)
Ask by Black Spencer. in the United States
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solutions are \( x = 0 \), \( x = 2 \), and \( x = -4 \).
Solución
To solve the equation:
\[
- x^{3} - 2x^{2} + 8x = 0
\]
**Step 1: Factor out \( x \)**
\[
x(-x^{2} - 2x + 8) = 0
\]
This gives one solution:
\[
x = 0
\]
**Step 2: Solve the quadratic equation**
\[
- x^{2} - 2x + 8 = 0
\]
Multiply both sides by \(-1\) to simplify:
\[
x^{2} + 2x - 8 = 0
\]
**Step 3: Use the quadratic formula**
\[
x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}
\]
For the equation \(x^{2} + 2x - 8 = 0\), \(a = 1\), \(b = 2\), and \(c = -8\):
\[
x = \frac{-2 \pm \sqrt{(2)^{2} - 4(1)(-8)}}{2(1)}
\]
\[
x = \frac{-2 \pm \sqrt{4 + 32}}{2}
\]
\[
x = \frac{-2 \pm \sqrt{36}}{2}
\]
\[
x = \frac{-2 \pm 6}{2}
\]
This yields two solutions:
\[
x = \frac{-2 + 6}{2} = 2
\]
\[
x = \frac{-2 - 6}{2} = -4
\]
**Final Solutions:**
\[
x = [0, \, 2, \, -4]
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the equation \( -x^{3}-2 x^{2}+8 x=0 \), first, factor out the common term \( x \): \[ x(-x^{2} - 2x + 8) = 0 \] This gives one solution: \( x = 0 \). Next, we solve the quadratic equation \( -x^{2} - 2x + 8 = 0 \). We can multiply through by -1 for simplicity: \[ x^{2} + 2x - 8 = 0 \] Now we can factor this quadratic: \[ (x + 4)(x - 2) = 0 \] This gives two additional solutions: \( x + 4 = 0 \Rightarrow x = -4 \) and \( x - 2 = 0 \Rightarrow x = 2 \). Therefore, the solutions for \( x \) are: \[ x = [0, -4, 2] \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium