1. \( \quad 3 x+5=11 \) 2. \( \quad 4 x-7=9 \) 3. \( \quad 2 x+3=x+8 \) 4. \( \quad 5 x-2=3 x+6 \) 5. \( \quad \frac{2 x}{3}+4=10 \) 6. \( \quad 7 x-3=2 x+12 \) 7. \( \quad 4 x+8=2 x+14 \) 8. \( \quad 3 x-5=2 x-1 \) 9. \( \quad 6 x+4=3 x-8 \) 10. \( 2(x+3)=10 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Think of solving equations like being a detective! Each equation is a little puzzle waiting to be cracked. Just like detectives gather clues to figure out the culprit, we move terms across the equals sign and simplify until we isolate our mysterious variable \(x\). It’s all about finding that balance, like walking a tightrope while juggling numbers! Many people jump straight to the solution without checking their work. It's like baking a cake and forgetting to taste the batter! After you've solved for \(x\), always substitute it back into the original equation to ensure it holds true. This small step can prevent carelessness and lead to extra points in math tests or maybe even bonus cookies in the baking world! 🍪