Anelectric pylon stand on horizontal ground at a point som from the base of the pylon, the angle of elavation of the top of is \( 23^{\circ} \) Calculate the height of the pylon
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To calculate the height of the pylon, you can use the tangent function in trigonometry. If you let \( h \) be the height of the pylon and \( d \) be the distance from the observer to the base of the pylon, the relationship is given by \( \tan(23^{\circ}) = \frac{h}{d} \). Rearranging this gives \( h = d \cdot \tan(23^{\circ}) \). By substituting the value of \( d \) into this equation, you can find the height of the pylon. Understanding the angle of elevation is key in many fields! This concept is not just useful for calculating heights, but also comes in handy in architecture, civil engineering, and even in creating ramps for accessibility. Any opportunity where angles and distances intersect can use this principle, making it a real-world superhero of measurements!