Pregunta
upstudy study bank question image url

is looking up at the cliff of a mountain. He is 50 m from I 0 and the angle of elevation from where he stands is \( 66^{\circ} \). icular height of the mountain. (Use question 4 as a guidelit ram is not drawn according to scale)

Ask by Martinez Barrett. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the mountain is approximately 112 meters.

Solución

It appears you're working on a trigonometry problem involving the angle of elevation to determine the height of a mountain. Let's break down the problem and solve it step-by-step. ### **Problem Statement:** A person is standing **50 meters** away from the base of a mountain. The angle of elevation from the person's position to the top of the mountain is **\(66^{\circ}\)**. Determine the height of the mountain. ### **Diagram:** While a diagram isn't drawn to scale, envision the scenario as a right-angled triangle where: - The **horizontal distance** from the person to the base of the mountain is **50 meters**. - The **angle of elevation** from the person's eye to the top of the mountain is **\(66^{\circ}\)**. - The **vertical side** represents the **height of the mountain (h)** that we need to find. ``` | |\ | \ | \ | \ |____\ 50m 66° ``` ### **Solution:** 1. **Identify the Right Triangle Components:** - **Adjacent side (base):** 50 meters - **Opposite side (height of the mountain):** \( h \) meters - **Angle of elevation:** \(66^{\circ}\) 2. **Use the Tangent Function:** The tangent of an angle in a right triangle is the ratio of the opposite side to the adjacent side. \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \] Plugging in the known values: \[ \tan(66^{\circ}) = \frac{h}{50} \] 3. **Solve for \( h \):** \[ h = 50 \times \tan(66^{\circ}) \] 4. **Calculate \( \tan(66^{\circ}) \):** Using a calculator: \[ \tan(66^{\circ}) \approx 2.2460 \] 5. **Determine the Height \( h \):** \[ h = 50 \times 2.2460 = 112.3 \text{ meters} \] Rounding to a reasonable degree of precision: \[ h \approx 112 \text{ meters} \] ### **Conclusion:** The height of the mountain is approximately **112 meters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the height of the mountain, you can use trigonometric functions. The height (h) can be calculated using the tangent function: \( h = d \cdot \tan(\theta) \), where d is the distance from the base of the mountain (50 m) and θ is the angle of elevation (66°). Plugging in these values results in \( h = 50 \cdot \tan(66^{\circ}) \), giving you the height of the cliff! Remember, a common mistake when using trigonometric functions is not ensuring your calculator is set to the correct mode (degrees vs. radians). Always double-check that you’re in the right mode when working with angles! Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad